

"Consultoría para la estimación, análisis y comparación de los costos de exploración y producción de hidrocarburos en las cuencas colombianas y el diseño de una metodología para la actualización periódica de los mismos."

CONTRATO ANH-084-2006

Entrega Informe FASE 1

Caracterización de Cuencas y Estimación de Costos

Junio 13, 2007 Bogota - Colombia

Agenda

- 1. Resumen alcance Fase 1
- 2. Clasificación de Cuencas: alto, moderado y bajo costo
- 3. Análisis detallado de la caracterización de las cuencas y costos:

Hallazgo

Desarrollo

Producción

Transporte

CAPEX

- 4. Conclusiones y Recomendaciones
- 5. Siguientes Fases

Resumen alcance Fase 1

1. Caracterizar las cuencas colombianas, con base en los siguientes factores:

Sociales

Ambientales

Climáticos

Geográficos

Rutas de acceso

Tecnológicos

Conocimiento geológico

Nivel de actividad exploratoria

Disponibilidad de equipos

Propiedades de los hidrocarburos

Costo de transporte de los hidrocarburos

2. Identificar las variables y analizar cualitativa y cuantitativamente el impacto que ejercen sobre los costos.

Resumen alcance Fase 1

- 3. Analizar la tendencia de los finding cost, development cost y lifting cost de los últimos 5 años, para cada una de las cuencas.
- 4. Estimar cantidades máximas y mínimas de inversión (Capex) para:

Perforación de pozos exploratorios

Pozos estratigráficos

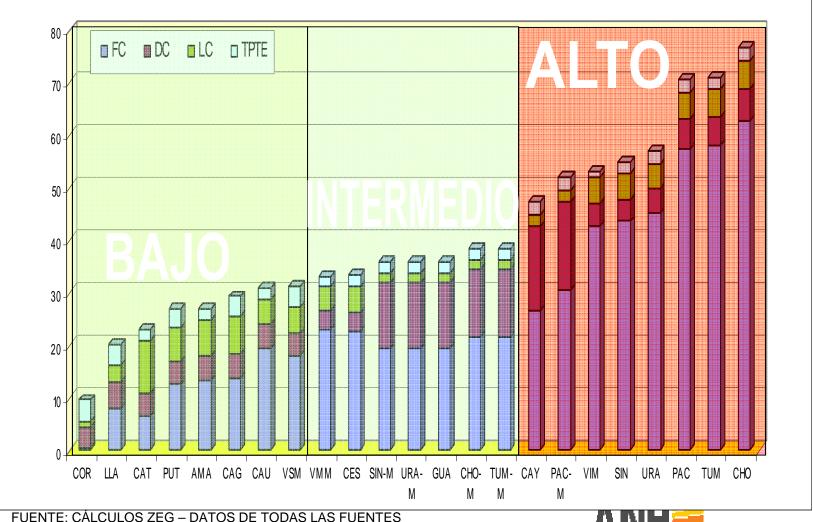
Adquisición sísmica 2D y 3D

Reprocesamiento sísmico

Pozos de desarrollo

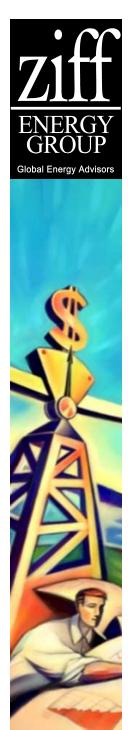
Tecnologías de recuperación mejorada

5. Estimar rangos de los finding cost, development cost y lifting costo para cada cuenca.

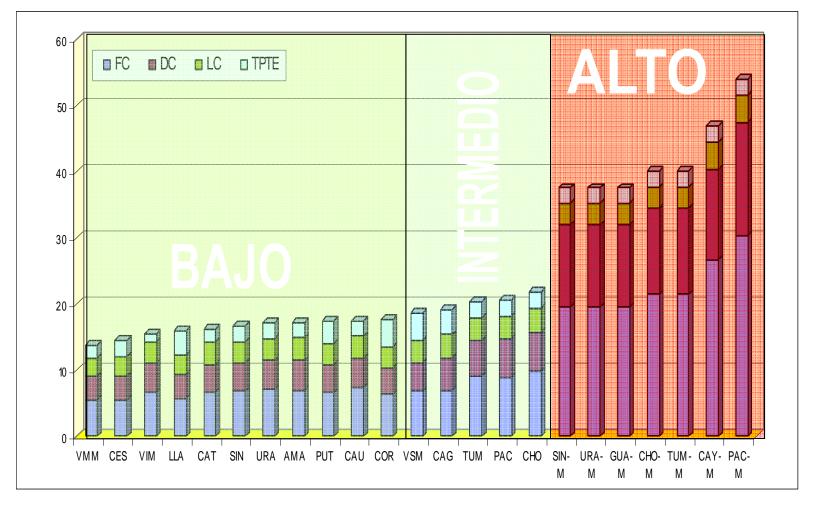

AGRUPACIÓN DE CUENCAS POR COSTOS

ESCENARIO 1.-HISTÓRICO

CUENCAS ACTIVAS: COSTOS CALCULADOS / SIN COSTOS: PROMEDIO

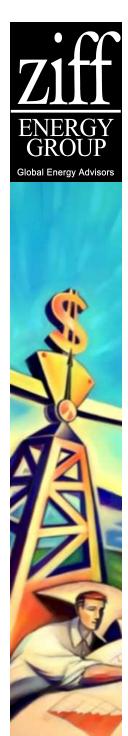

PAIS AJUSTADO POR POTENCIAL A DESCUBRIR

CUENCAS INACTIVAS: ANÁLOGOS AJUSTADOS POR FACTORES


AGRUPACIÓN DE CUENCAS POR COSTOS

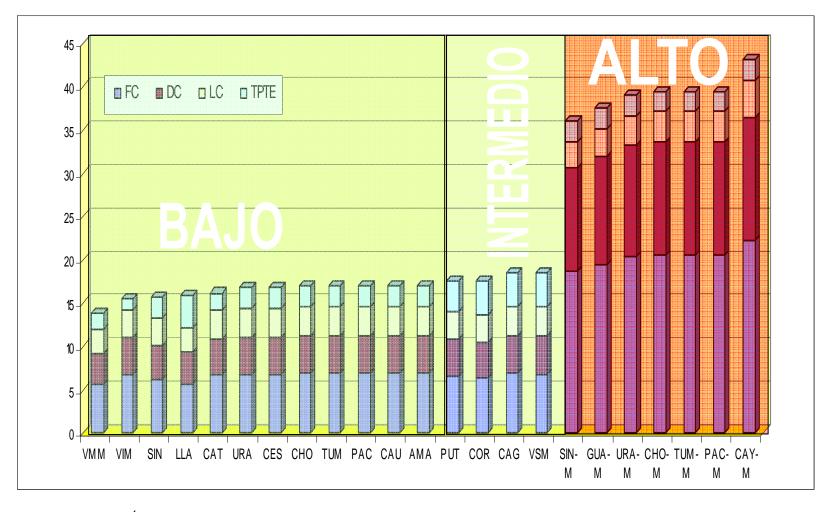
ESCENARIO 2.- NORMALIZADO PARCIAL

CUENCAS ACTIVAS: COSTOS PROMEDIO PAIS AJUSTADOS POR


POTENCIAL A DESCUBRIR

CUENCAS INACTIVAS: ANÁLOGOS AJUSTADOS POR FACTORES

FUENTE: CÁLCULOS ZEG - DATOS DE TODAS LAS FUENTES



AGRUPACIÓN DE CUENCAS POR COSTOS

ESCENARIO 3.-

TODAS LAS CUENCAS: COSTOS PROMEDIO PAIS AJUSTADOS POR POTENCIAL A DESCUBRIR EN REALCIÓN CON EL TOTAL

CUENCAS MARINAS: ZONA TERRESTRE AJUSTADA POR EFECTO MARINO

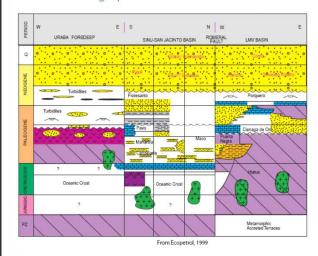
FUENTE: CÁLCULOS ZEG – DATOS DE TODAS LAS FUENTES

Caracterización

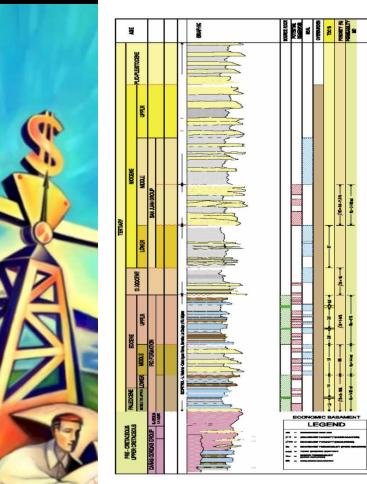
Tabla 5											
	COMPLEJIDAD SISTEMAS PETROLÍFEROS DE LAS CUENCAS INACTIVAS										
CUENCA	ADECUACIÓ Trampa	N DE PARÁMETROS SI	STEMA PETROLÍFE Roca Generadora	RO* Sello Superior	Madurez Térmica	Sincronización	Tipo de HC	Profundidad Reservorios (1)	Fuente Información	Complejidad Geologica	
10 - SINU-C	I	I	I	В	В	I	CrudoL.Gas& condensado	3000-16000	Plegables Cuencas	INT	
10 - SINU-M	I	P	I	В	I	I	Gas& condensado	10000-16000.	Plegables Cuencas	INT-ALT	
11 - LOS CAYOS-M	P	P	P	P	P	P	Gas& condensado	5000E	Poster	ALT	
12 - URABA-C	I	I	I	В	I	I	Gas& condensado	2000-12000	Análogo Sinu	INT	
12 - URABA-M	I	P	I	В	I	I	Gas& condensado	4000-12000	Análogo Sinu	INT-ALT	
13 - CAGUAN VAUPES	P	В	P	I	P	P	Crudo pesado& extraPesa.	2000-8000	Poster	INT-ALT	
14 - CAUCA PATIA	P	I	P	В	P	P	Gas& condensado	2500-5500	Plegables Cuencas	INT-ALT	
15 - CHOCO-C	P	I	P	В	P	P	Gas& condensado	6500-16000	Plegables Cuencas	INT-ALT	
15 - CHOCO-M	P	P	P	I	P	P	Gas& condensado	11000- 12000	Análogo CHO-C	ALT	
16 - TUMACO-C	P	P	P	В	P	P	Gas& condensado	9000-15000	Análogo CHO-C	INT-ALT	
16 - TUMACO-M	P	P	P	P	P	P	Gas& condensado	10000-15000	Análogo CHO-C	ALT	
17 - PACIFICO-C	P	P	P	P	P	P	Gas	SIN INFOR.	Análogo CHO-C	ALT	
17 - PACIFICO-M	P	P	P	P	P	P	Gas	SIN INFOR.	Análogo CHO-C	ALT	
18 - AMAZONAS	P	P	P	P	P	P	Gas& condensado	4000-6000E	Análogo Campo	ALT	
	В	BUENO		(1) Ver Apén	dice 13A						
	I	INTERMEDIO			omn	lejidad	Sistem	as Pe	trolífe	ros	
	P	POBRE			<u> С</u> р		etioniei 03				

07EI-7001-02

COPYRIGHT 2007 ZIFF ENERGY GROUP



Caracterización


IDENTIFICACIÓN CUENCAS

ANÁLOGAS

Chronostratigraphic Chart

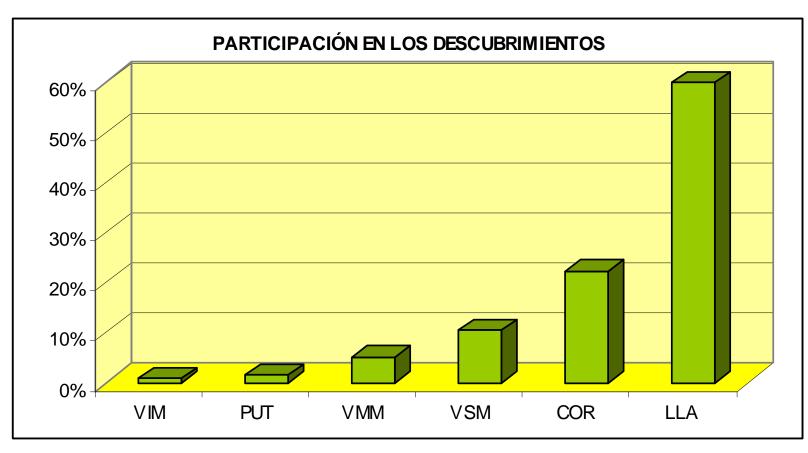
Correlación Pacifico - Uraba/Sinú/VIM

Caracterización

CUENCAS INACTIVAS	Complejidad	Tipo de cuenca	ANÁLOGO
10 - SINU CONTINENTAL - SIN	ALT	Prisma Acresionario	VIM
SINU MARINO – SIN-M	ALT	Prisma Acresionario	GUA-M
11 - LOS CAYOS - CAY	ALT	Transpresional	GMDW (1)
12 - URABA CONTINENTAL - URA	ALT	Prisma Acresionario	VIM
URABA MARINO – URA-M	ALT	Prisma Acresionario	GUA-M
13 - CAGUÁN VAUPES - CAG	ALT	Antepaís	PUT
14 - CAUCA PATIA - CAU	ALT	Intermontana	VSM
15 – CHOCO CONTINENTAL - CHO	ALT	Forearc	VIM
CHOCO MARINO – CHO-M	ALT	Forearc	GUA-M
16 - TUMACO CONTINENTAL - TUM	ALT	Forearc	VIM
TUMACO MARINO – TUM-M	ALT	Forearc	GUA-M
17 - PACIFICO CONTINENTAL - PAC	ALT	Forearc?	S. Baudó
PACIFICO MARINO – PAC-M	ALT	Forearc?	GUA-M
18 - AMAZONAS - AMA	ALT	Graben	JURUA- BRASIL

(1) GULF MEXICO DEEP WATER

RESERVAS DESCUBIERTAS


MBPe

CUENCA	2002	2003	2004	2005	2006	PERÍODO
COR	30,90	3,50		0,02	3,45	37,87
LLA	56,16	5,08	7,13	15,24	17,73	101,33
PUT				2,71		2,71
VIM					1,32	1,32
VMM		0,28	8,32		0,03	8,63
VSM	2,55	0,13	8,27	1,03	5,75	17,73
PAÍS	89,61	8,99	23,72	18,99	28,28	169,59

INVERSIONES EXPLORATORIAS MUSD CONSTANTES DE 2006 PERÍODO CUENCA 2002 2006 2003 2004 2005 CAT 12,6 5,3 0,1 17.5 34,9 70,4 **CES** 0,0 4,6 0,4 5,4 8,5 18,8 COR 4,5 3,3 2,3 6,2 35.0 18,8 **GUA** 0,9 7,2 0,1 12,5 69,9 90,6 LLA 159,4 130,8 126,9 191,9 201,5 810,5 34,3 PUT 0,1 0,0 3,3 22,3 8,6 SINU 0.0 33,4 49,3 83.9 0,0 1,2 VIM 4,4 2,0 14,4 12,9 22,5 56,3 35,1 **VMM** 39,7 19,2 44,6 60.4 198,9 **VSM** 77,7 79,1 64,5 32,9 65.6 319,8 CAU 0,0 0,0 0,0 0,0 1.0 1,0 CHO 8,0 0,0 0,0 0,0 18,5 19,3

3,0

1.742,0

0,2

547,1

CAY

PAÍS

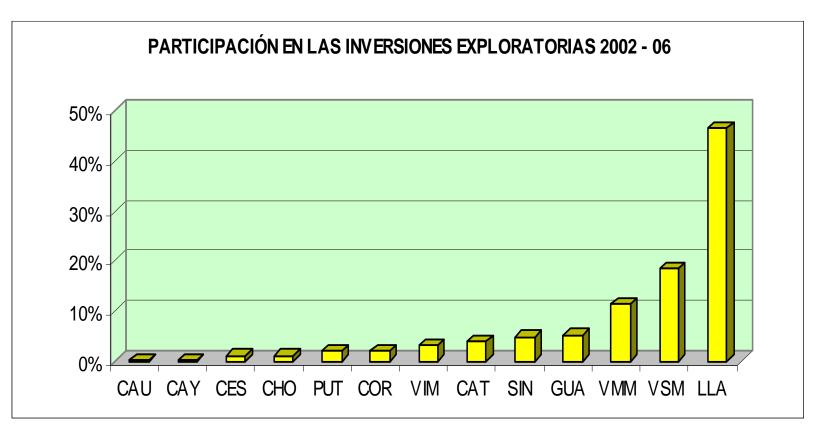
0,9

310,8

0,0

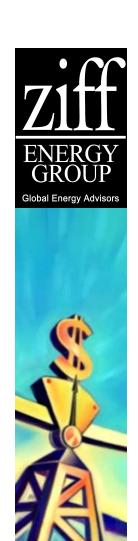
273,2

0,0

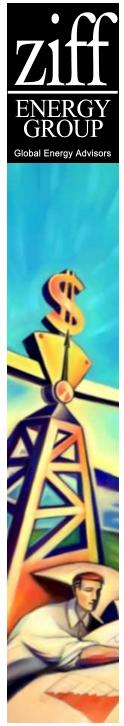

265,5

2,0

345,4



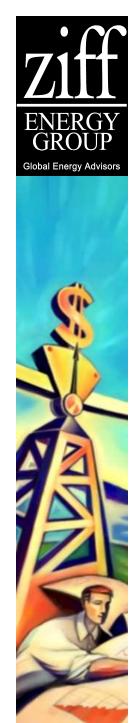
COSTO DE HALLAZGO 2002- 2006									
CUENCA	INVERSIÓN	RESERVAS	FC						
	MUSD	MBPe	USD/BPe						
CAT	70								
CES	19								
COR	35	37,87	0,93						
GUA	91								
LLA	811	101,33	8,00						
PUT	34	2,71	12,66						
SINU	84								
VIM	56	1,32	42,72						
VMM	199	8,63	23,05						
VSM	320	17,73	18,04						
CAU	1								
СНО	19								
CAY	3								
PAÍS	1.742	169,59	10,25						



COSTO DE HALLAZGO, USD/BPe

USD CONSTANTES DE 2006

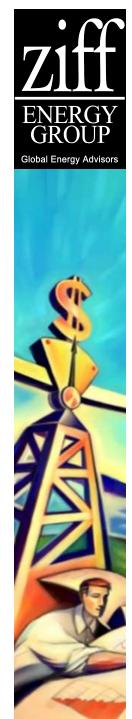
CUENCA	2002	2003	2004	2005	2006	PERIODO
COR	0,61	1,28		152,84	1,80	0,93
LLA	2,84	25,76	17,80	12,59	11,37	8,00
PUT				8,23		12,66
VIM					17,10	42,72
VMM		1/1/70	2,31		•	,
VIVIIVI		141,72	۷,3۱		2.013,21	23,05
VSM	30,46	608,78	7,80	31,92	11,41	18,04
PAÍS	3,47	30,40	11,20	18,18	19,35	10,25



COSTO DE HALLAZGO 2002 - 06

USD/BPe Ktes 2006

CUENCA	MÍNIMO	PROMEDIO	MÁXIMO	
COR	0,30	0,30	0,93	
LLA	6,89	7,82	8,00	
PUT	12,66	12,66	12,66	
VIM	42,72	42,72	42,72	
VMM	22,99	22,99	23,05	
VSM	18,02	18,02	18,04	
PAÍS	6,60	6,97	10,25	



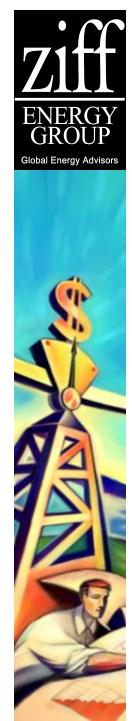
INVERSIONES EN DESARROLLO MUSD CONSTANTES DE 2006

CUENCA	2002	2003	2004	2005	2006	PERÍODO
COR	99,02	108,86	100,55	50,05	47,64	406,12
LLA	35,48	85,91	50,62	53,53	59,30	284,85
TOTAL	134,51	194,77	151,17	103,58	106,94	690,97

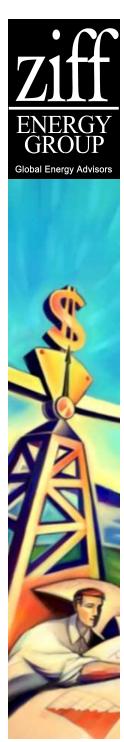


RESERVAS A DESARROLLLAR

MBPe


CUENCA	2002	2003	2004	2005	2006	PERÍODO
COR	30,90	3,50	-	-	3,45	37,87
LLA	55,60	-	-	-	-	55,60
PAÍS	86,50	3,50	-	0,02	3,45	93,47

COSTO DE DESARROLLO, USD/BPe								
CUENCA	INVERSION	RESERVAS	DC					
	MUSD	MBPe	USD/BPe					
COR	406,12	37,87	10,73					
LLA	284,85	55,60	5,12					
PAÍS	690,97	93,47	7,39					

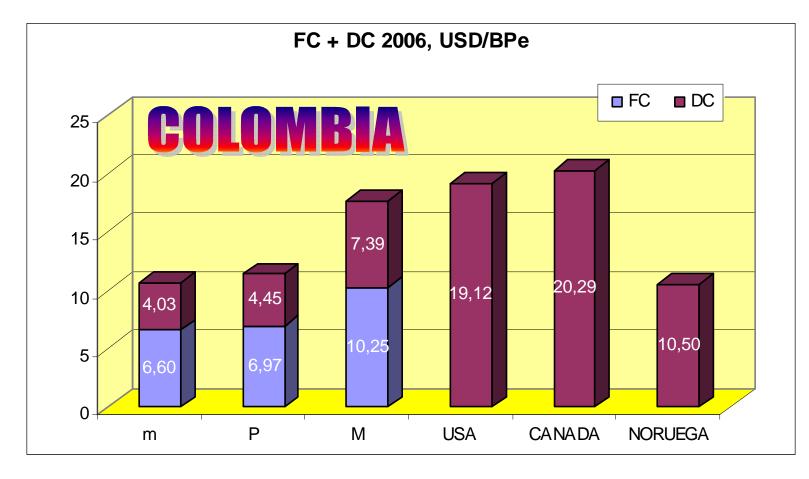


COSTO DE DESARROLLO, USD/BPe

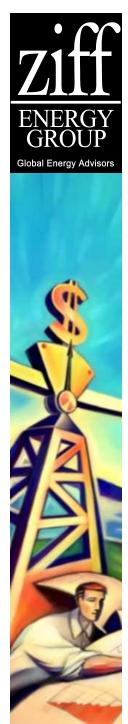
USD CONSTANTES DE 2006

CUENCA	2002	2003	2004	2005	2006	PERIODO
COR	3,20	31,10		3.336,36	13,81	10,73
LLA	0,64					5,12
PROMEDIO	1,56	55,65		6.905,18	31,00	7,39

RANGO COSTO DE DESARROLLO PERÍODO 2002-2006, USD/BPe


USD CONSTANTES DE 2006

CUENCA	MINIMO	PROMEDIO	MAXIMO
COR	3,51	4,13	10,73
LLA	5,12	5,12	5,12
PAÍS	4,03	4,45	7,39



Colombia vs Otros países

Costo de Producción

LIFTING COST, USD CONSTANTES 2006											
	USD/BPe										
CUENCA	2001	2002	2003	2004	2005	2006					
CATATUMBO	7,65	7,96	7,75	6,39	9,56	10,03					
CORDILLERA	0,00	4,66	2,98	2,43	1,53	1,07					
GUAJIRA	0,87	1,05	1,43	1,17	1,62	1,63					
LLANOS	1,71	2,73	2,88	2,65	2,59	3,42					
PUTUMAYO	5,56	6,13	6,53	5,68	6,09	6,56					
V. INFERIOR M.	4,29	5,62	8,73	7,60	3,96	4,95					
V. MEDIO M.	5,39	6,26	5,22	4,37	3,91	4,58					

3,67

2,77

4,81

3,46

V. SUPERIOR M.

PROMEDIO

3,78

3,03

3,88

3,13

3,24

2,77

3,31

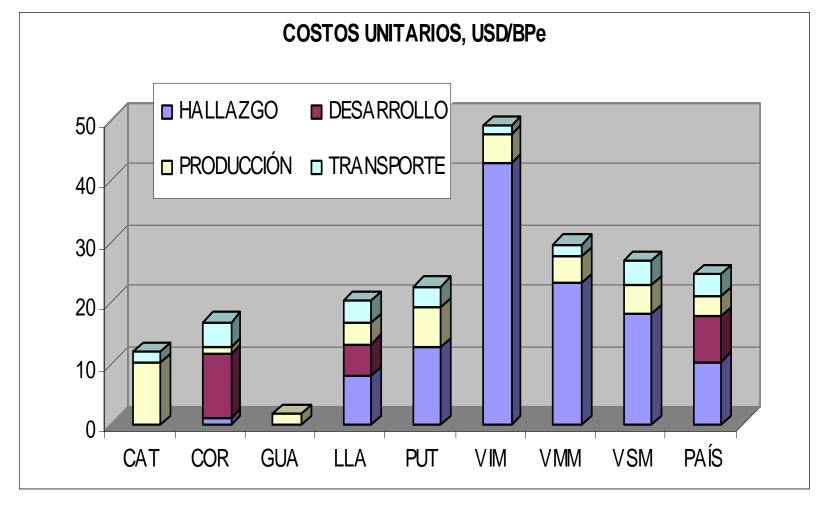
2,20

Costo de Producción

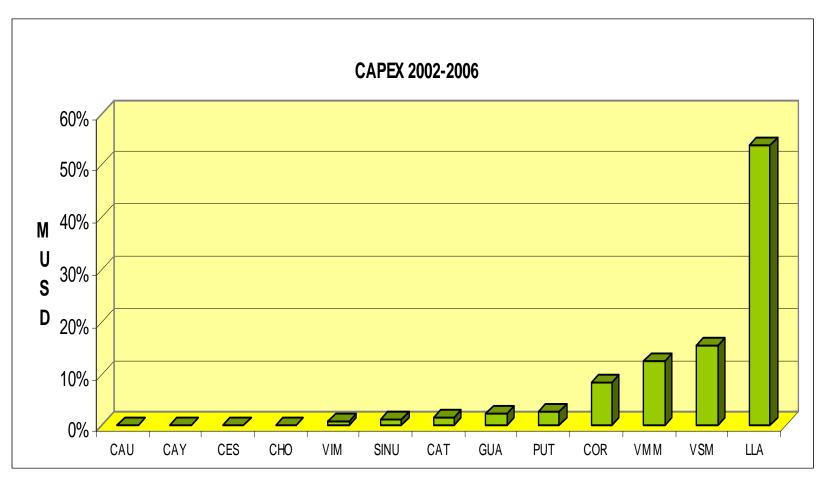
LIFTING COST USD/BPe

CUENCA	MÁXIMO	PROMEDIO	MÍNIMO
CAT	13,00	10,03	4,00
COR	1,17	1,07	0,96
GUA	1,80	1,63	1,47
LLA	9,50	3,42	2,50
PUT	18,00	6,56	4,00
VIM	7,00	4,95	3,00
VMM	12,00	4,58	3,00
VSM	13,00	4,81	4,50
PROMEDIO	9,01	3,46	2,60

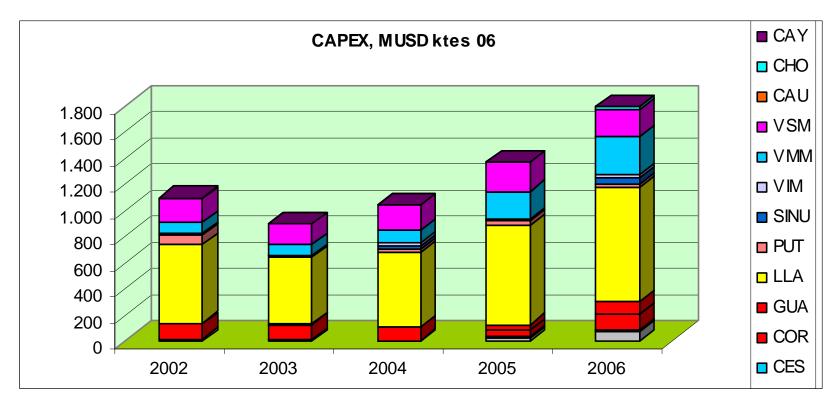
Costo de Transporte


COSTOS DE TRANSPORTE DE CRUDO USD/BP_							
CUENCA	REFINERÍA	COVEÑAS					
CATATUMBO	1,87	2,007					
CORDILLERA	3,36	4,815					
LLANOS	3,29	4,146					
PUTUMAYO	5,09	1,774					
V. INFERIOR M.	1,74	0,719					
V. MEDIO M.	1,27	2,577					
V. SUPERIOR M.	3,35	4,739					
PROMEDIO	3,11	4,04					

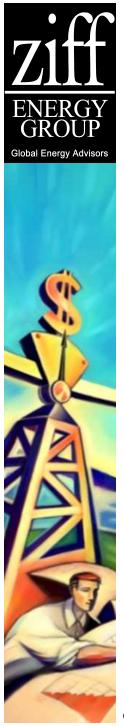
Resolución 180541 del 12 de Mayo del 2006 del Ministerio de Minas y Energía

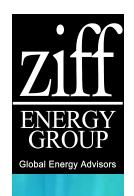

CAPEX TOTAL MUSD CONSTANTES DE 2006

CUENCA	2002	2003	2004	2005	2006	PERÍODO
CAT	13	5	0	24	68	110
CES	0	5	0	5	8	19
COR	118	113	104	52	125	513
GUA	4	9	1	41	93	148
LLA	607	504	574	756	882	3.323
PUT	73	16	15	39	21	164
SINU	0	0	33	1	49	84
VIM	4	2	14	13	27	61
VMM	92	85	103	211	289	779
VSM	183	156	189	222	207	956
CAU	0	0	0	0	1	1
СНО	1	0	0	0	18	19
CAY	1	0	0	2	0	3
PAÍS	1.095	895	1.035	1.367	1.789	6.180

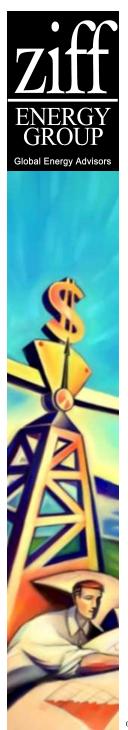


CAPEX EXPLORATORIO									
MUSD CONSTANTES DE 2006									
CUENCA	2002	2002 2003 2004 2005 2006 PERÍODO							
CAT	12,6	5,3	0,1	17,5	34,9	70,4			
CES	0,0	4,6	0,4	5,4	8,5	18,8			
COR	18,8	4,5	3,3	2,3	6,2	35,0			
GUA	0,9	7,2	0,1	12,5	69,9	90,6			
LLA	159,4	130,8	126,9	191,9	201,5	810,5			
PUT	0,1	0,0	3,3	22,3	8,6	34,3			
SINU	0,0	0,0	33,4	1,2	49,3	83,9			
VIM	4,4	2,0	14,4	12,9	22,5	56,3			
VMM	35,1	39,7	19,2	44,6	60,4	198,9			
VSM	77,7	79,1	64,5	32,9	65,6	319,8			
CAU	0,0	0,0	0,0	0,0	1,0	1,0			
СНО	0,8	0,0	0,0	0,0	18,5	19,3			
CAY	0,9	0,0	0,0	2,0	0,2	3,0			
PAÍS	310,8	273,2	265,5	345,4	547,1	1.742,0			





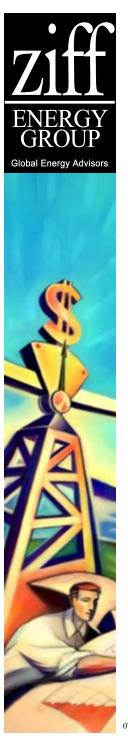
CAPEX DESARROLLO + CAPEX OPERATIVO							
	M	USD CO	NSTANT	TES DE 2	2006		
CUENCA	2002	2003	2004	2005	2006	PERÍODO	
CAT	0	0	0	7	33	39	
COR	99	109	101	50	119	478	
GUA	3	2	1	28	24	57	
LLA	448	373	448	565	680	2.513	
PUT	73	16	12	17	12	130	
VIM	0	0	0	0	4	5	
VMM	57	45	84	166	228	580	
VSM	105	77	124	189	141	636	
PAÍS	784	622	769	1.021	1.242	4.438	


A	ACTIVIDADES EXPLORATORIAS - PERIODO HISTORICO 2002 - 2006								
	SÍSMICA								
	3D	2D	2De	REPROC.	POZOS	POZ	OS EX	PLORA	ATORIOS
CUENCA	KM ²	KM	KMe	KM	ESTRAT.	A-3	A-2	A-1	TOTAL
CAT		894	894	1.339		3	1	3	7
CES		236	236	1.527	21	3	0	7	10
COR		581	581	2.664		2	0	1	3
GUA	3.472	1.640	7.543	3.733		3	0	0	3
LLA	3.139	3.793	9.128	38.518		66	2	51	119
PUT	76	54	184	3.206		4	0	1	5
SIN	1.100	9.779	11.649	5.726		0	0	0	0
VIM		1.706	1.706	5.758		3	1	0	4
VMM	480	758	1.574	4.812		15	2	11	28
VSM	577	2.350	3.332	9.923		42	4	19	65
СНО		378	378	3.059		0	0	0	0
CAY		8.077	8.077	4.085		0	0	0	0
TOTAL	8.844	30.245	45.280	84.351	21	141	10	93	244

CAPEX UNITARIO REPROCESO SÍSMICO 2002 - 2006								
	USD/KM							
CUENCA	MUSD	KM	PROMEDIO	MIN	MAX			
CAT	0,3	1.339	261	235	287			
CES	0,2	1.527	112	101	123			
COR	0,7	2.664	261	235	287			
GUA	0,7	3.733	197	177	217			
LLA	9,9	38.518	256	231	282			
PUT	0,5	3.206	170	153	187			
SIN	0,8	5.726	142	127	156			
VIM	1,5	5.758	265	238	291			
VMM	1,8	4.812	375	337	412			
VSM	4,5	9.923	454	408	499			
СНО	0,8	3.059	273	246	300			
CAY	1,0	4.085	252	227	277			
PAÍS	22,9	84.351	271	244	298			

CAPEX UNITARIO ADQUISICIÓN SÍSMICA 2002 - 2006 USD/KM 2De

	OSD/KW ZDE							
CUENCA	MUSD	KM 2De	PROMEDIO	MIN	MAX			
CAT	19,2	894	21.466	19.319	23.612			
CES	8,2	236	34.561	31.105	38.017			
COR	21,9	581	37.676	33.908	41.443			
GUA	72,4	7.543	9.603	8.642	10.563			
LLA	167,4	9.128	18.341	16.507	20.175			
PUT	3,0	184	16.369	14.732	18.006			
SIN	78,1	11.649	6.704	6.034	7.374			
VIM	32,9	1.706	19.298	17.369	21.228			
VMM	33,1	1.574	21.033	18.930	23.136			
VSM	68,4	3.332	20.534	18.481	22.587			
СНО	15,5	378	40.951	36.856	45.046			
CAY	0,0			0	0			
PAÍS	520	37.203	13.979	12.582	15.377			



CAPEX POZOS EXPLORATORIOS MUSD CONSTANTES 2006/POZO

MIOOD CONCIANTED 2000/1 OZO							
CUENCA	PERÍODO						
	SOMERO	MEDIO	PROFUNDO				
CAT		4,05					
CES	0,94	0,00					
COR		4,24					
GUA		3,80					
LLA	0,90	3,90	36,77				
PUT		3,08					
VIM		2,15					
VMM	1,02	3,64	19,99				
VSM	1,57	3,41	22,85				

Somero pozos hasta 3.000 pies de profundidad Medio entre 3.000 y 12.000 pies Profundos con TD > 12.000 pies

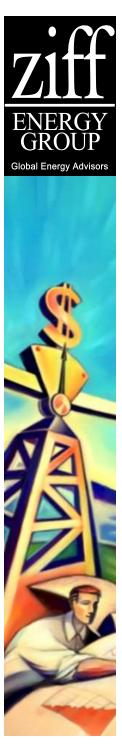
CAPEX POZOS DE DESARROLLO							
	MU	SD/POZO					
CUENCA	NCA INVERSIONES MAXIMO PROMEDIO O						
COR	296	3,74	3,40	3,06			
GUA	52	18,93	17,21	15,49			
LLA	1.557	3,86	3,51	3,16			
PUT	73	3,05	2,78	2,50			
VIM	0	0,00	0,00	0,00			
VMM	360	1,46	1,33	1,20			
VSM	394	3,74	3,40	3,06			
PAÍS	2.732	4,33	3,94	3,54			

Conclusiones y Recomendaciones

- Los costos son competitivos a nivel país, como lo demuestra la comparación USA, Canadá y Noruega.
- Los resultados son muy sensibles a las reservas y puede significar estimular o desanimar la inversión.
 Por esa razón es fundamental actualizar los estimativos de potencial con nueva información y tecnologías de evaluación más precisas y confiables.
- La información de costos está dispersa y es de calidad muy variable que hace difícil su consolidación. Para superar esta dificultad es importante mejorar los procesos de captura y estandarización de la información.

Conclusiones y Recomendaciones

- •Las inversiones están concentradas en las cuencas LLA, VSM y VMM, las de mayor potencial y los mayores descubrimientos.
- •La inversión en la industria se duplicó entre el 2003 y el 2006.
- •La confidencialidad de la información de costos y reservas dificultó el normal desarrollo del proyecto.
- •Los pocos descubrimientos y aún menores desarrollos no muestran una tendencia definida.



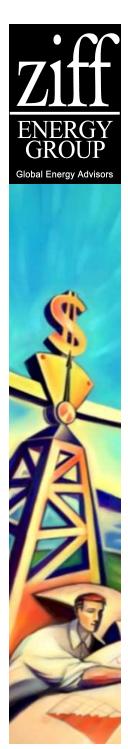
Conclusiones y Recomendaciones

- •Los costos anuales de hallazgo y desarrollo no son consistentes, se debe usar el promedio del quinquenio. Internacionalmente, con actividades superiores, se usan promedios de tres años.
- •De acuerdo con las densidades de geoinformación se determinó que desde el punto de vista exploratorio no hay cuencas maduras, de lo cual se deduce que el país está inexplorado y se requiere
- •Para facilitar la exploración se deben implementar políticas de reducción de costos de exploración, en busca de descubrir el gran potencial de hidrocarburos que tiene el país. Entre las diferentes opciones se pueden mencionar la peroración *slim hole* en pozos someros y medianos, perforación *underbalance* en crudos pesados, utilización de sísmica 4D y la perforación horizontal para aumenta el recobro.

Siguientes Fases

- Fase 2.
 - ✓ Próxima a concluirse en las fechas inicialmente estimadas.
 - ✓ Complementa la fase 1 en el diagnóstico de la situación de la actividad de hidrocarburos en Colombia:
 - □Establece una metodología de actualización de los costos de las actividades petroleras ya analizadas y estimadas.
 - □Con base en un modelo de actualización proyecta a cinco los costos (2007-2011). Utiliza una combinación de escenarios alternativos para las principales variables que caracterizan a la macroeconomía colombiana y al mercado internacional del petróleo. Año base 2006 con información detallada de la Fase 1.

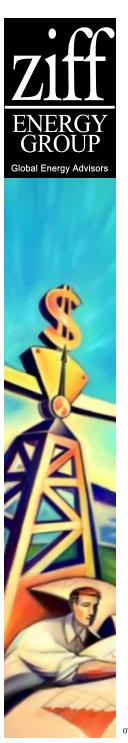
Siguientes Fases


• Fase 2 (cont....)

✓Incluye varios ejercicios de validación de los modelos de actualización y proyección que utilizan los datos históricos y el detalle de costos del 2006.

✓Implica uso modelos económicos (de actualización y proyección) para simular los datos históricos.

- ☐ Agrega información complementaria al análisis al comparar resultados con datos históricos
- ☐ Mejora el ajuste del funcionamiento del modelo eliminando los errores sistemáticos a través de su revisión y calibración.
- ☐ Incorpora el resultado directamente al modelo para mejorar su funcionamiento.



Siguientes Fases

- Fase 2 (cont....)
 - ✓ Implica uso modelos económicos.....(cont..)
 - □Enriquece el diagnóstico de la Fase 1.
 - ☐ Agrega información sobre: evolución de los costos y desviaciones respecto a la ruta esperada, estructura a lo largo del tiempo, variabilidad en términos de la producción y caracterizaron de variables para escenario económico histórico (2002-2006).
 - ✓ Los resultados serán complemento del diagnóstico y servirán como insumo de la Fase 3 en los aspectos que hacen referencia a la competitividad de la actividad petrolera colombiana.

Muchas Gracias

anh.colombia@ziffenergy.com

