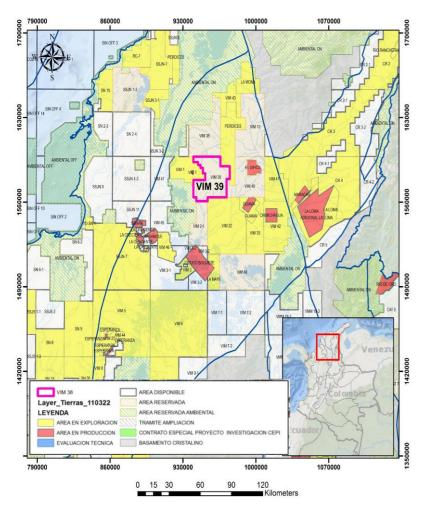


Minenergía

NUEVA GRANADA 2D-2019 SEISMIC SURVEY VIM 39 AREA

LOWER MAGDALENA VALLEY BASIN

June 24th, 2022



Content

- Introduction
- Geological Framework
- Infrastructure
- VIM 39 Data Base
- Nueva Granada 2D 2019
- Conclusions

Location

PERDICES **VIM 40** VIM 1 **VIM 39** VIM 22 VIM 39 Block Area VIM 2-1 2 4 8 PEDRAZ CHIVOLO SABANAS DE SAN ANGE **VIM 39** PUNO DEL CARMEN SAN ZENO 0 3.25 6.5 13 19.5 26

96155.46Ha

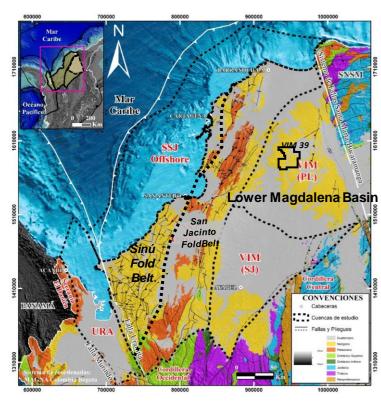
Û

El futuro es de todos Minenergía

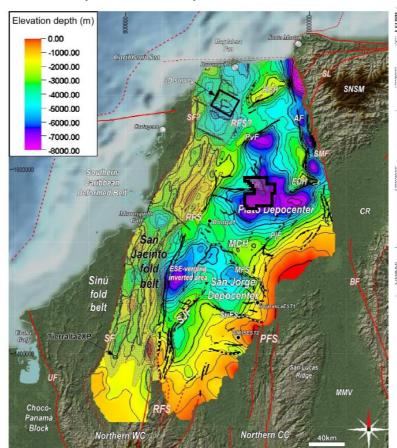
VIM 39 Municipalities

	Department	Municipalities
a:		Chivolo
		Sabanas de San Ángel
	Magdalena	Tenerife
		Plato
		Nueva Granada

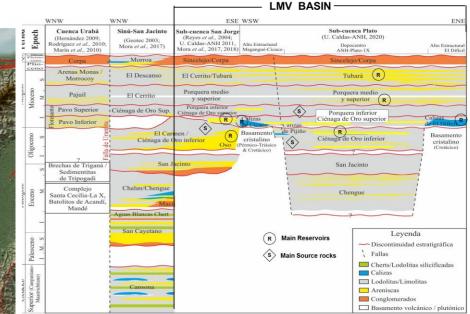
Seismic Lines Influence


Department	Municipalities				
Magdalena	Nueva Granada				
	Plato				
	Ariguani				
	Santa Ana				
	Santa Barbara de Pinto				

ANH Land Map, March 2022

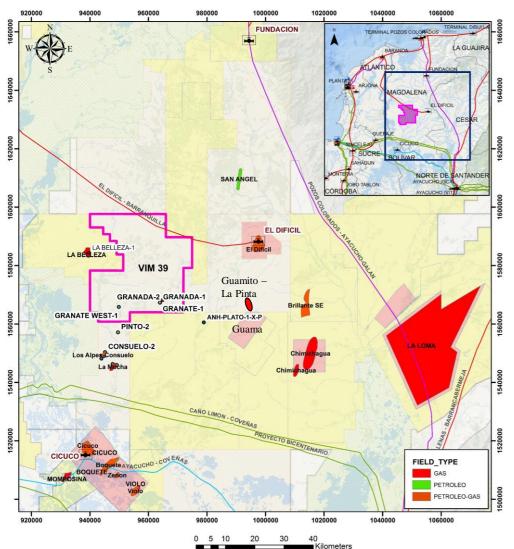


Geological Setting and Stratigraphic Chart



Taken from Universidad de Caldas – ANH, 2020

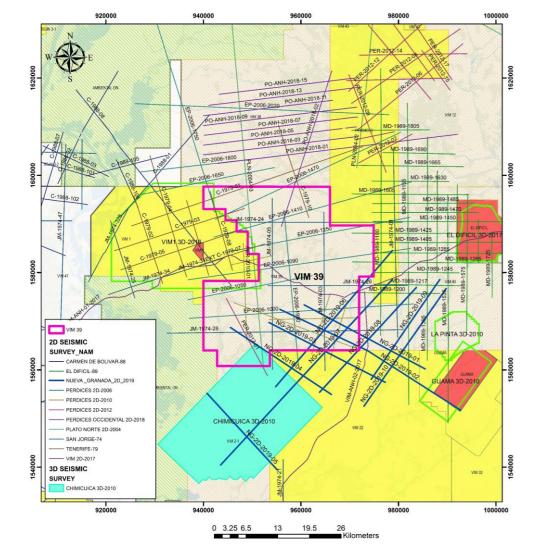
Structural Depth Model of the top of the Basement


Mora, 2018

In the area of interest two main units are considered reservoirs: Tubará and Upper Porquero Formations.

Infrastructure and Fields

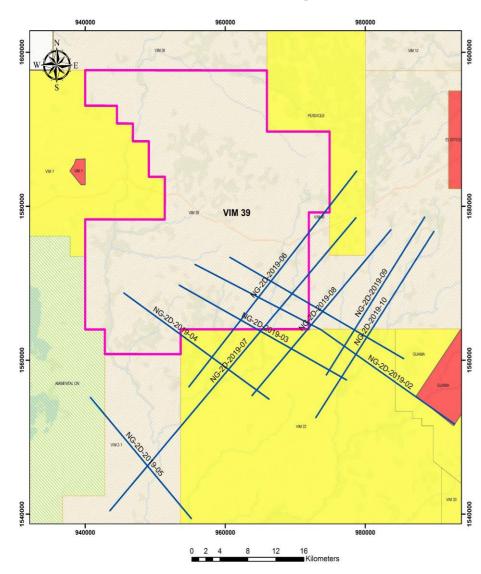
INFRASTRUCTURE NEARBY


PIPELINE	GAS PIPELINE	OIL PIPELINE
FUNDACION	EL DIFICIL	CAÑO LIMON
84 Km	37 Km	COVEÑAS 50 Km

WELLS									
ANH-PLATO-1-X-P	21713 Ft	GRANATE WEST-1	7000 Ft						
APURE-1	11481 Ft	<u>GRANATE-1</u>	<u>12045</u> Ft						
APURE-2	12412 Ft	LA BELLEZA-1	11791 Ft						
APURE-3	12041 Ft	PINTO-1	11206 Ft						
GRANADA-1	3870 Ft	TUPALE-1	15592 Ft						
GRANADA-2	4504 Ft								

	FIELDS NEARBY	
EL DIFICL	CICUCO	BRILLANTE
CHIMICHAGUA	VIOLO	MOMPOSINA
BOQUETE	ZENON	LA LOMA
LA BELLEZA		

AVAILABLE 2D SEISMIC: 11 SURVEYS


AREA	SURVEY NAME	TOTAL LENGTH (Km)	# LINES
	CARMEN DE BOLIVAR-88	363.7	1
	EL DIFICIL-89	642.6	6
	NUEVA GRANADA 2D-2019	315.8	7
	PERDICES 2D-2006	536.1	8
VIM 39	PERDICES 2D-2010	100	6
	PERDICES 2D-2012	255.3	1
	PERDICES OCCIDENTAL 2D-2018	295	1
	PLATO NORTE 2D-2004	450	1
	SAN JORGE-74	1140.6	5
	TENERIFE-79	216	6
	VIM 2D-2017	358	1
	TOTAL LENGTH	4359.14	43

AVAILABLE 3D SEISMIC: 1 SURVEY

SURVEY	AREA (Km²)
CHIMICUICA 3D-2010	511.80

Nueva Granada 2D: Acquisition and Processing

10 Seismic lines

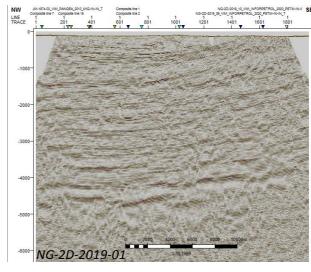
Acquisition Parameters Acquired by: Vector Geophysical Record Tools: Sercel Unite V3 Sample rate: 2 Ms Record Length: 8 S.

Source:

Source Type: Sismigel Charge: 2700 g. Depth: 10 m. Interval: 50 m.

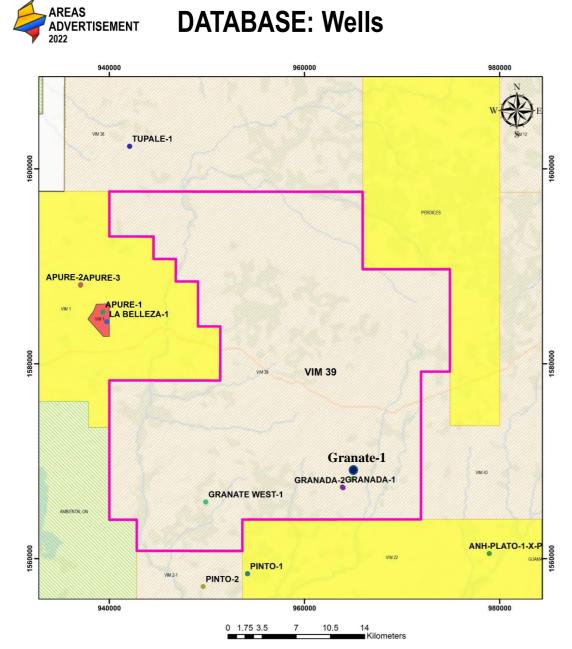
Receivers:

Geophone Type: Single Sensor Natural Frequency: 10 Hz Channels: 720 Type of laying: Roll on roll of Nominal Fold :150 Receiver Interval: 25 m. SP: 5013 Receiving Stations: 12521


AGENCIA NACIONAL DE HIDROCARBUROS

Minenergía

Processed by Inforpetrol (PSTM)

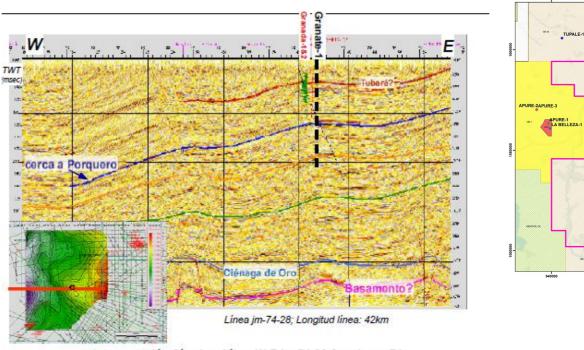


Straightforward sequence

- Geometry
- Noise attenuation
- First break picking
- Decon
- Statics correction
- Velocity Analysis
- Kirchhoff Migration

LINE	Sp's	LENGTH (Km)	LENGTH IN THE VIM39 BLOCK (Km)
NG-2D-2019-01	413	28	12.7
NG-2D-2019-02	743	42.5	17.9
NG-2D-2019-03	385	26.8	12.4
NG-2D-2019-04	347	24.8	9.7
NG-2D-2019-05	278	21.3	-
NG-2D-2019-06	651	36.8	17.6
NG-2D-2019-07	881	51.7	9.7
NG-2D-2019-08	431	29.2	0.2
NG-2D-2019-09	359	24.8	-
NG-2D-2019-10	525	29.4	-
TOTAL	5013	315.8	80.5

AGENCIA NACIONAL DE HIDROCARBUROS


El futuro es de todos Minenergía

WELL NAME	TD DATE	TD (Ft)
ANH-PLATO-1-X-P	5/23/2014	21713
APURE-1	4/4/1980	11481
APURE-2	6/27/1989	12412
APURE-3	3/13/2018	12041
GRANADA-1	4/12/1947	3870
GRANADA-2	12/20/1947	4504
GRANATE WEST-1	8/23/2012	7000
<u>GRANATE-1</u>	<u>1/23/2011</u>	<u>12045</u>
LA BELLEZA-1	9/25/2019	11791
PINTO-1	5/9/1947	11206
TUPALE-1	9/26/2009	15592

Granate-1 well

- Company: Hocol
- Total Depth: 12045'
- Spud date: January 2011
- Structure: Anticline with closure in four ways.
- Targets: Tubará Fm, and Upper Porquero
- Seismic anomalies at different stratigraphic levels within the Porquero Formation.
- Final Classification: Plugged and abandoned C3. Non commercial producer.
- Gas shows: 19,43% 54,85%, associated to thin levels of sandstones. Mud weight: 11,2 17,4 ppg
- Tests: 8 tests in 16 open intervals (5036' 8958')
- Estimated reserves: 133 Bcf.

ANH

Interpretación Sísmica Línea W-E jm-74-28 San Jorge-74

El futuro es de todos Minenergía

Granate-1

GRANADA-2GRANADA-1

PINTO.2

× Contraction

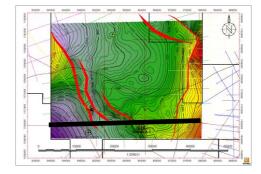
ANH-PLATO-1-

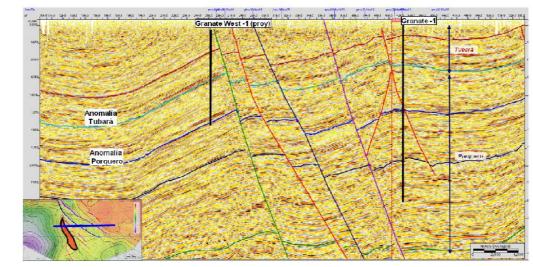
Grana	ate-1	: Tes	sts		
		(1) GRANA	TE-1 [MD]		
MD	GR	LResS	PHIN_ss	DTS	Pr <mark>oducción</mark>
1:19937	0.00 gAPI 150.00	0.2000 ohm.m 200.0000		\$0.00 us #\$00.00	
	Color fill	LResM	RHOB	DTC	1
		0.2000 ehm.m 200.0000	1.9500 g/cm3 2.9500	50.00 us #200.00	
		LResD			
0 -					
1000		3		- <u></u> -	
2000		minite and the			N
3000	lation day air the start sec	And Malantina			
4000					
	han a start a s	* Ardenen			Z N
6000	and a second				
7000	Manager 1, 200, 194	والمجتمع والعرابه وال			N
9000	and a particular	and a state of the			N
10000	-				N
4	1711				

Summary of produced intervals. Granate – 1 well

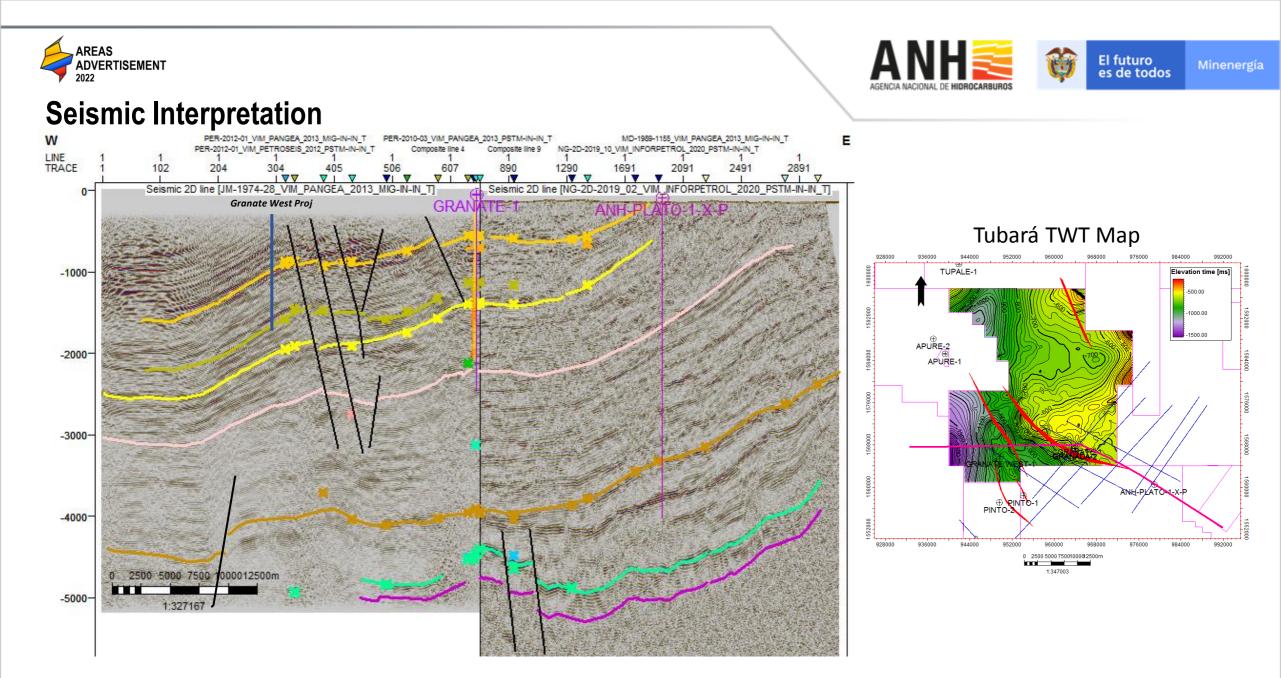
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	No.	Depths (MD in ft)	Thickness(ft)	Lithology	FEL (shows)	GR	SP	Res (ohm)	Neut/Dens	Pixler	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		8978-8958	30	vf-fg-ssts	EG 24 96%	v/-~	v	6.3.8	Victure	~ water	303 bls water
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$											145 bls water, 12500 ppm Cl; 7000 scf/d
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		8426-8452	26	vf-fg-ssts	10%	۲	~	<2	~	٧	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Ш	8418-8423	5	vf-fg-ssts	10%	~	~	<2	~	v	Dry test
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		8405-8412	7	vf-fg-ssts	10%	~	~	<2	~	v	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		8299-8311	12	vf-fg-ssts	17%	√-~	v	2 a 4		~	
$\frac{1}{10} = \frac{1}{100} = \frac{1}{1000} = \frac$		8324-8334	10	vf-fg-ssts	19%	√-~	٧	2 a 4		~	Dry test
IV 6518-6539 21 vf-fg-ssts FG 30.1% v v 2-3.50hm v v v Pumping N2; Burned gas on surface. 6000 scf/d estimated V 5306-5346 40 f.gr-ssts FG 52.26% v v v 2-3.50hm v v v scf/d estimated V 5306-5346 40 f.gr-ssts FG 52.26% v v v v2-3.20hm v v ⁻ Total volumen of gas estimated 31210 scf/d. Water formation 11000-15000 ppm VI 5081-5099 18 f.gr-ssts FG 54.85% v v v2-3.50hm v v sdays of test. After test started a peak production of 54000 scf/d. S081-5099 18 f.gr-ssts FG 54.85% v v-~ v2-30hm v-~ v	ш	8100-8116	16	vf-fg-ssts	SG 17.46%	√-~	~	<3	√-~	٧	217 bls water, 1250-1460 ppm Cl; dry test.
IV 65 10-6539 21 VF-rg-ssts FG 30.1% V V 2-3.50nm V V scf/d estimated V 5306-5346 40 f.gr-ssts FG 52.26% V V V 2-3.20nm V V V Scf/d estimated V 5306-5346 40 f.gr-ssts FG 52.26% V V V 2-3.20nm V V V Scf/d estimated VI 5081-5099 18 f.gr-ssts FG 54.85% V V V 2-3.50nm V V After test started a peak production of 54000 scf/d. S036-5068 32 f.gr-ssts FG 54.85% V V-~ V2-30nm V-~ V		8074-8081	7	vf-fg-ssts	FG 4.93%	√-~	~	<2	~	v	
V5306-534640f.gr-sstsFG 52.26%VVVV-2-3.20hmVVV~Total volumen of gas estimated 31210 scf/d. Water formation 11000-15000 ppmVI5081-509918f.gr-sstsFG 54.85%VVVV2-3.50hmVVSdays of test. After test started a peak production of 54000 scf/d.	IV	6518-6539	21	vf-fg-ssts	FG 30.1%	٧	v	2-3.5ohm	v	v	
VI 5036-5068 32 f.gr-ssts FG 54.85% V V V2-3.50mm V V After test started a peak production of 54000 scf/d.	v	5306-5346	40	f.gr-ssts	FG 52.26%	v	v	√2-3.2ohm	V	√~	Total volumen of gas estimated 31210 scf/d.
5036-5068 32 f.gr-ssts FG 54.85% √ √-~ √2-30hm √-~ √ scf/d.	VI	5081-5099	18	f.gr-ssts	FG 54.85%	٧	v	√ 2-3.5ohm	٧	v	
		5036-5068	32	f.gr-ssts	FG 54.85%	٧	v-~	√ 2-30hm	√-~	v	scf/d.

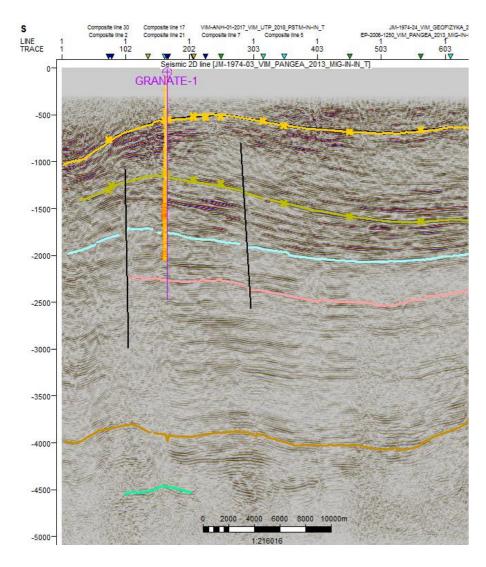
Gas production without water. Gas flows 7000-8000 scf/d constant. Peak production of 10000 scf/d

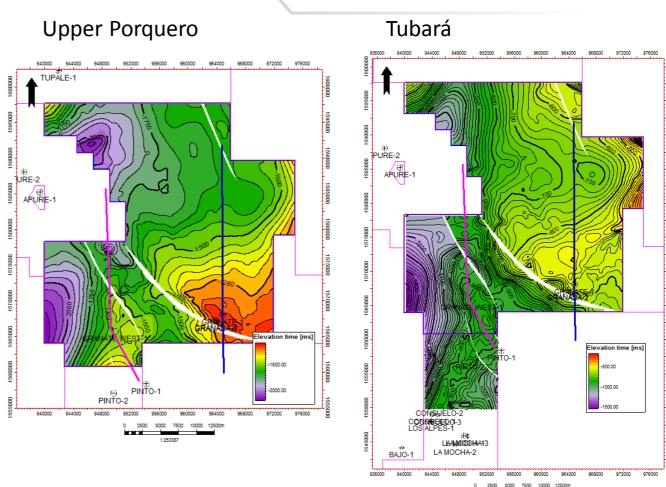


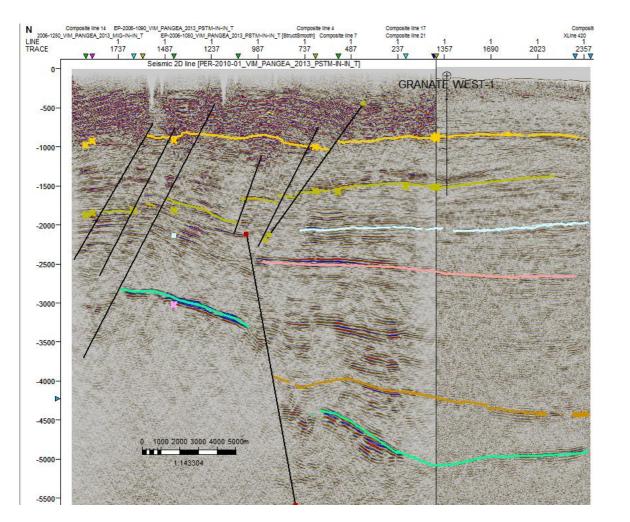

Granate-1 West well

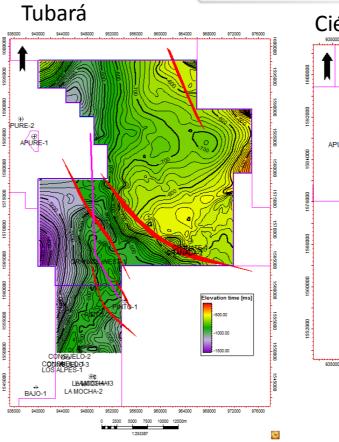
- Company: Hocol
- TD: 7000'
- Spud date: August 23rd of 2012
- End date: September 12th of 2012
- Structure: Combined
- The Tubará Formation was drilled with a mud weight between 8.8 and 11 ppg. Poor gas shows were obtained with a maximum of 4% composed mainly by metane (C1).
- The Porquero Formation was drilled with a mud weight between 10.5 and 13.8 ppg and a low gas background was obtained with poor shows of methane and ethane that reached a total gas maximum of 6% in the thin and scarce sandstones levels.
- During the drilling of the Upper Porquero, from 5350 to TD, connection gas peaks were that reached 20% and showed a more complex chormatography (C1 to C4 or C5)

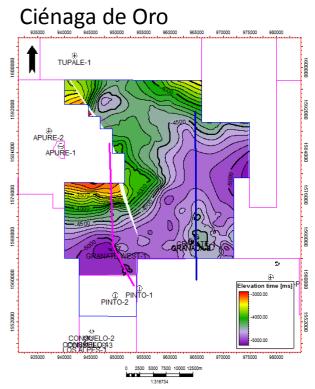





		O GV	V-1 [MD] 20.00 1.65 R 20.00 0.45 N 20.00			
0.00 GR 150.00	MD	0.20 MSFL 0.20 RT20 0.20 RT90	20.00 1.65 R	HOB 2.65	140.00 DT	0.0
0.00 GR 150.00 -80.41 SP 91.87 26.00 CALL 6.00	MD 1:9070	0.20 RT20	20.00 0.45 N	PHI -0.15		
26.00 CALI 6.00	-	0.20 RT90	20.00			
1-					2 +	
3		1 🗲			E	
	· ·	1 🚝	⊨		5 -	
	i '	1 🔫			5	
	i '	1 🕿				
		=			£-	
		1 🔨				
		Ţ				
	- 100 -					
	C 🗧 .				N I	
		7			_	
1 -					-	T I
		- I 🗲				
				1		
		🧲				
					-	
£				-	I	
	- 00 -				3	\vdash
	R .	笋				
	- ·	秉				
3	- I	🍞				
			1 2			
		🏊			1	
		1 1 🛫	t i 🔫 🗖		-	
		3	. 3	2	2	
		- 1	- i 🔫			
	• •				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	- 000				-	\vdash
	· •	🗲	± 🍠		-	
13	- ·	🗧				
	- · ·	🗲			1 - 5 -	
	h '	🗲	↓ ∰=		1	
	i .	1 I 🗲				
	-	1 1 🏂			1 10	Porqui
] 🗲	i 💽 –		€	
	[]	🐛		1	「「「「「「」」	
	- 8 -	- E - E - E - E - E - E - E - E - E - E	1 37	1		
	9.	1	1 5	-	Ξ	
		1 1			erest freetree	
		🗲	3 -	1	-	
		1 4		- 2 -	1	
		I I F	🛃	2	l €	
1 3 3 -		🛃	1 🗲		1 1	
	L.	1 1 5			I SI	
		1		1 🗲 🗌	- F	
1		🎦	12	2	≥	
	- 80	<u> </u>			And the second second second	\vdash
	W .	₩		3	-₹	
	· ·	1	🏂	3	1	
	Ļ.,	🇲	- S-			
		1 3		3		
	- ·	1 5			5	
1		1 5	i 🎜	1 📂	3	
		1		1 1	1	
	ł ·	1] 🧎] 🏋] 🕽	P	
	9	₹	😽	≰_	I €	
	- 000			1	5	
	۰ <i>۳</i> .	1] 🌮	1 3		5	
		3		1	2	
	· · ·	1 🔁	II D-	3		
	· ·	1		3	I ₽	
	r '	1 1			1	
2	r '	1 🕹	👤	5	×.	
		1 I E		1.2		
		1]		1 1	- E	
		🛃	🔽	1 7 -	₹	
	_ ē _	 }-		1 7 4	₹	


253387


1


. . . .

Conclusions

- The VIM 39 area has eleven 2D seismic programs, distributed in 43 lines. This surveys have been acquired since 1979 and the most recent program is Nueva Granada 2D-2019, acquired by Vector Geophysical.
- The seismic program Nueva Granada 2D-2019, is located in the northern of the LMV basin in the Magdalena department, within the area reserved by the ANH, VIM 39. Corresponding to 315,8 Km of length, distributed in seven sesimic lines, 5 dip lines and 5 strike lines, with a 5013 source points and 12521 receiver stations.
- Four exploratory wells have been drilled in the VIM 39 area, where, Granate-1 well, drilled by Hocol in 2011 was considered non commercial producer. The formation characteristics could not be estimated, but it is concluded that the permeability is very low, even lower than initially estimated (<0.001 mD). Measurements from electrcla logs, production test and samples showed very tight sands in thin beds along Upper Porquero.
- The Granate-1 exploratory well was a dry well in the Tubará Formation and producer of gas in the Porquero Superior, however, the production rates obtained in the tests (7000 scfd) do not reach commercial quantities, so it was decided to plug and Leave.
- Different types of plays were identified, as anticlines with closure in four ways and seismic anomalies at different stratigraphic levels within the Porquero Formation. Tubará Fm is mainly affected by normal faults of local nature, its thickness is constant throughout the sub-basin, and it outcrops to the east. The Cienaga de Oro Formation presents important variations of thicknesses due to having been deposited while the depocenter was formed and fill paleotopography.