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Wastewater Triggered Seismicity - 2011
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* Presentation 1 - The Principles of Natural and Induced Seismicity
— Understanding Crustal Earthquakes



Force ,F, (10*kg)

Stick-Slip and Crustal Earthquakes

ial displ
Axial displacement (mm) Axia splocement (mm)

Laboratory friction experiments on both intact and saw-cut decimeter-scale
samples exhibit stick-slip behavior similar to that observed on crustal-scale
faults. Is it possible to use laboratory friction experiments to learn about plate
bounding faults? Is the physics the same?
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Stick-slip and Fault Friction

FORCE

DISPLACEMENT



Coulomb Criterion — Frictional Sliding

Sliding occurs when Amonton’s
Law is satisfied:

T Coefficient of Friction

— = U (sliding friction)
O

\ n



Maximum Friction for a Variety of Rock Types
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Different Tectonic Environments
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How Fluid Pressure Affects Frictional Sliding

Sliding occurs when Amonton’s
Law is satisfied:

T Coefficient of Friction
= U (sliding friction)

Effective Normal Stress:

o,=S,-P,
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* Presentation 1 - The Principles of Natural and Induced Seismicity
— Understanding Crustal Earthquakes
— Earthquake Magnitude and the Richter scale



Simple Formulas Relate Earthquake Slip
to Magnitude

Seismic Moment M, = Slip x Fault Area x Shear Modulus

Moment Magnitude M,, (an alternative Richter magnitude, especially
useful for very large earthquakes)

2 . .
M, = glogmM0 -10.7 if M units dyn cm

M, = %10g10M0 -6 if M units Nm

Fundamentally, Earthquake Magnitude is a Measure of
How Big the “Patch” of a Fault Slips and How Far it Slips
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— The Critically-Stressed Crust



54°

- 50°

A Critically-Stressed Crust

26" - =
110° 105° 100° 95° 90° 85° 80°

« Earthquakes Occur Nearly
Everywhere in Intraplate Areas

» Small Perturbations Capable of .
Triggering Seismicity, Even in
“Stable Areas” 25

» Rate of Earthquakes Reflect
Intraplate Strain Rate, Not Stress
State



Brittle Crust in Failure Equilibrium

Brittle Failure in Critically-Stressed Crust Results

From Creep in Lower Crust and Upper Mantle
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Coulomb Criterion — Frictional Sliding

Sliding occurs when Amonton’s
Law is satisfied:

T Coefficient of Friction
= U (sliding friction)

Effective Normal Stress:

o,=S,-P,




Important Definitions

e Triggered Earthquakes — A small perturbation
triggers slip on a geologically active faults. The
earthquake would have occurred someday as a
natural geologic process. The earthquake could
be quite big (if it occurs on a big fault) but the
perturbation could be quite small.

* |Induced Earthquakes — Occur on geologically
inactive faults. The earthquakes occur only
because of a very large perturbation. The size of
the earthquake depends on the size of the
perturbation.
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Earthquake Magnitude and the Richter scale

The Critically-Stressed Crust

Triggered Seismicity and Induced Seismicity
Characterizing the Potential for Triggering Fault Slip



Step 1 - Develop a Geomechanical Model

Principal Stresses at Depth

S, — Overburden

Symax — Maximum horizontal
principal stress

St min— Minimum horizontal
principal stress

Additional Components of a
Geomechanical Model

PID — Pore Pressure

UCS — Rock Strength (from logs)

Fractures and Faults (from Image
Logs, Seismic, etc.)

30



Determination of stress orientation and magnitude in deep wells
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Mean S, ., orientation
N116°E

« 420 Consistent Observations of
Stress Orientation

* Range of depths: 400 — 1800 m

e Tensleep Fm. ~1650 m

Strike-Slip/Normal
Stress Magnitudes
SHmax ~ Sv > Shmin




Step 3 — Resolve Stress onto Faults

T=WwS,-P,)
P,=S,-t/u
Py~ P = Critical Pressure Perturbation
‘ _SHmax 0 O
S, S- |0 S, O
0 0 Shmin
s, t= S n
S,=n-t
2=12-852

Fault Element




Step 4 - Predict Slip Potential

Required Critical Pressure Perturbation ~ 16 MPa
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Step 5 — Evaluate Sensitivity to Uncertainties

Quantitative Risk Assessment
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S2 Fault Zone System
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— Earthquake Magnitude and the Richter scale

— The Critically-Stressed Crust

— Triggered Seismicity and Induced Seismicity

— Characterizing the Potential for Triggering Fault Slip

Presentation 2 - Seismicity Induced by Waste Water Injection and
Hydraulic Fracturing
— Waste water injection and triggered seismicity



Water Re-use — Western Pennsylvania

Hydraulic Fracturing Flow-Back Water



Figure 13. The Apache 34 pad in the Horn River Development of Northern British Colombia is a total of

6.3 acres where twelve multiple fractured horizontal wells recover gas from approximately 5000 acres.

Courtesy George King, Apache Corp.



Prague’ OK Youngstown, Ohlo

. Dec.31,201T-M4.0
B 3 M5+ Eqgs
) {Calarado/New Mexico
Aug. 23,2011-M5.3 NOV" 2011

Guy,/Arkansas
Feb)27,2011-M4.7

&
Dallas-Ft.Worth, Texas

May 16, 2009-M 3.3

B
P —

110° 105° 100° 95° 85° 80° 65°

About 150,000 Class Il EPA Injectlon Wells Operatmg in the US
Why the Increase in Seismicity?



Outline

Presentation 1 - The Principles of Natural and Induced Seismicity
— Understanding Crustal Earthquakes
— Earthquake Magnitude and the Richter scale
— The Critically-Stressed Crust
— Triggered Seismicity and Induced Seismicity
— Characterizing the Potential for Triggering Fault Slip

Presentation 2 - Seismicity Induced by Waste Water Injection and
Hydraulic Fracturing
— Waste water injection and triggered seismicity

— (Case studies



(4 Seismicity Triggered by Flow-Back Injection
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Earthquakes Spreading Out Along an Active Fault

Shmin SHmax

. '

7N

Strike-slip

Horton (2012)

Hurd and Zoback (2012b)



Curmulative Numbsrof Earthquakes
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Prague Earthquakes — Triggered By
Produced Water?
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Prague Earthquakes — Triggered By
Produced Water?
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Raton Basin
CBM Produced Water

Background Seismicity?

« 2EQs 1973
— Largest M4.3

. 2 EQs 1992
— Largest M3.3

Weingarten, M. and S. Ge (2012), A case study
of waste fluid injection and induced seismicity
in the Raton Basin, Trinidad, CO, USA, Abstract,
AGU Fall Meeting, San Francisco, CA, S34A-05.
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Spatial Correlation

* |Injection Wells
begin waste fluid
injection Nov. 1994

« 2001 EQ Swarm
— Highlights NE-SW
trending structure
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105°30'0"W 105°0'0"W 104°30'0"W 104°0'0"W

N

A 2001
5 b5
% Colorado %
= =
s New Mexico E

o-gmczuoKilometers
) 3
W Raton Basin
A Injection Locations (2001)
® Earthquakes (1973-2001)

105°30'0"W 105°0'0"W 104°30'0"W 104°0'0"W



105°30'0"W 105°0'0"W 104°30'0"W 104°0'0"W

Monitor Seismicity A 2006
 Several NM waste 4 I
fluid wells report
Injection activities
g Colorado _g
. .. . § New Mexico g
« Seismicity increases
iIn NM portion of
Raton Basin =Z e Kl ]
W Raton Basin
A Injection Locations (2006)
® FEarthquakes (.1973'2006)

105°30'0"W 105°0'0"W 104°30'0"W 104°0'0"W



105°30'0"W 105°0'0"W 104°30'0"W 104°0'0"W

Spatial Correlation A 7011
« 2011 EQ Swarm z z
— NE-SW trending 4 L
structure propagated
further to the SW
g Colorado .. _g
— Largest EQ M5.3 on E e 2
NE trending basement
fault
) W Raton Basin 59,
A Injection Well Locations
® 2011 Earthquake Swarm
® FEarthquakes (l1973-Present)

105°30'0"W 105°0'0"W 104°30'0"W 104°0'0"W



Outline

Presentation 1 - The Principles of Natural and Induced Seismicity

— Understanding Crustal Earthquakes

— Earthquake Magnitude and the Richter scale

— The Critically-Stressed Crust

— Triggered Seismicity and Induced Seismicity

— Characterizing the Potential for Triggering Fault Slip

Presentation 2 - Seismicity Induced by Waste Water Injection and
Hydraulic Fracturing

— Waste water injection and triggered seismicity

— Case studies

— Hydraulic fracturing and induced seismicity



Propagation of Hydraulic Fractures

FAVORED FRACTURE
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Hubbert and Willis (1957)



Dan Moos et al.
“$PE 145849

* HuronFm

Shear Slip on Pre-existing
Fractures and Faults
Enhances Permeability
Of Shale and Stimulates
Production

Microseismic
Events

Horizontal Drilling and Multi-Stage
Slick-Water Hydraulic Fracturing
Induces Microearthquakes (-1 > M > -3)
To Create a Permeable Fracture Network

Hydraulic Fractures
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Inducing Slip on Mis-Oriented Faults
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Figure 2. Regional view of stations used in the analysis (left) and local stations (right). Local stations installed only in April (green
circles), well position (violet rig symbol), two continuously recording stations HHF and AVH (yellow circles) and BGS reported
locations of events (red stars: April 1, 2011 [M2.3] May 27, 2011 [M1.5]).
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Bottom hole pressure and Seismicity
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Figure 6. BHP in the exploration well Preese Hall [red line). Events detected by KESW (black crosses) and by HHF (blue dots) are
represented by the origin time and magnitude relative to a master event at a given station. The upper plot shows a detailed
window of stage 2; the lower plot shows stages 4 and 5. There is no detection by HHF during stage 2 because the local station HHF
was not available.
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Risk Associated with
Injection and Triggered Seismicit

Microseismic Events Associated with Hydraulic Fracturing
* Very Low Risk to Public
* Limited rock volume, limited pumping volume/time
 Very few events > M 2 in 100,000’s of frac stages

Seismic Events Associated with Wastewater Injection

* Low Risk to Public
* Much Larger Pumping Volumes
« Can be Effectively Managed by Effective Site
Characterization, Monitoring and Proactive Planning
* Minimize Injection by Water Recycling

Potential of Triggered Seismicity with Large Scale CCS
 |njection of extremely large volumes pose considerable risk
of triggering “larger” earthquakes




Liquid carbon dioxide has been injected into
the Sleipner gas- and oilfield in the North Sea
for 15 years without triggering any seismicity.
It serves as a good example of how fluid injec-
tion can be done safely.

Managing the Seismic Risk Posed by

Wastewater Disposal

Mark D. Zoback

rom an earthquake perspective, 2011 was

Virginia Setsmic Zone, an area known to produce

aremarkable year. While the de \

accompanying the magnitude-9.0 Tohaoku

carthquake that occurred off the coast
of Japan on March 11 still captures attention
warldwide, the relatively stable interior of the
U.S. was struck by a somewhat surprising num-
ber of small-to-moderate earthquakes that were
widely felt. Most of these were natural events,
the types of earthquakes that ocaur from time to
time in all intraplate regions. For example, the
magnitude 58 that occurred in central Virginia
on Aug. 23 was felt throughout the northeast,
damaged the Washington Mc t, and caused
the temporary shutdown of a nuclear power
plant. This ecarthquake occurred in the Central

38 « EARTH Apri 2012

EARTH April, 2012

rel ly frequent small earthquakes.
However, a number of the small-to-moderate
earthquakes that oocurred in the U.S. interior in
2011 appear to be assodated with the disposal
of wastewater, at least in part related to natural
gas production. Several small earthquakes were
apparently caused by Injection of wastewater
assoclated with shale gas production near Guy,
Ari; the largest earthquake was a magnitude 4.7
event on Feb. 27. In the Trinidad/Raton area near
the barder of Colorado and New Mexico, injection
of wastewater assoclated with coalbed methane
production seems to be associated with a magni-
tude-5.3 event that oocurred on Aug, 22, and small

carthquakes that appear to have been triggered by

www.earthmagazine.ong

ot Seaecl

Managing Triggered

Seismicity
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seismicity

detected




Seismicity Triggered by Injection
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Earthquakes Spreading Out Along an Active Fault

Shmin SHmax

. '

7N

Strike-slip

Hurd and Zoback (2012)

Horton (2012)
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- Avoid Injection into Potentially Active Faults

- Limit Injection Rates (Pressure) Increases

- Monitor Seismicity (As Appropriate)

- Assess Risk

- Be Prepared to Abandon Some Injection Wells
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.2, Seismicity Triggered by Hydraulic Fracturing

proceed with
caution:

seismicity

detected
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— Hydraulic fracturing and induced seismicity

— Case Studies

— How to plan and manage potential risks

— Specific baseline data required



Step 1 - Develop a Geomechanical Model

Principal Stresses at Depth

S, — Overburden

Symax — Maximum horizontal
principal stress

St min— Minimum horizontal
principal stress

Additional Components of a
Geomechanical Model

PID — Pore Pressure

UCS — Rock Strength (from logs)

Fractures and Faults (from Image
Logs, Seismic, etc.)

74



Mean S, ., orientation
N116°E

« 420 Consistent Observations of
Stress Orientation

* Range of depths: 400 — 1800 m

e Tensleep Fm. ~1650 m

Strike-Slip/Normal
Stress Magnitudes
SHmax ~ Sv > Shmin
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3. Monitor Seismicity A 2006
» Several NM
waste fluid wells
report injection
activities
« Seismicity o
increases in NM = T——"2
portion of Raton &
Basin B Raton Bsin
A Injection Locations (2006)
f Earthquakes (.1 973-2006) . .

Weingarten and Ge (in preparation)



Spatial Correlation

« 2011 EQ Swarm

— NE-SW trending
structure propagated
further to the SW

— Largest EQ M5.3 on
NE trending basement
fault

Seismicity Results
from Increased

Injection Volumes
With Time
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Low Hydraulic Conductivity Model

2006

Pore Pressure
Change (MPa)

mlo
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7 0.6
| 0.4

0.2
- 0.0




Low Hydraulic Conductivity Model

2011

Pore Pressure
Change (MPa)

m1.0
0.8

0.6
0.4

0.2
- 0.0

Injection Rate?

Injection Volume?

Presence of Potentially Active Faults?
Hydraulic Modeling of Injection Strategies?



Be Prepared to Abandon Some Injection Wells
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- Avoid Injection into Potentially Active Faults

- Limit Injection Rates (Pressure) Increases

- Monitor Seismicity (As Appropriate)

- Assess Risk

- Be Prepared to Abandon Some Injection Wells
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* Presentation 1 - The Principles of Natural and Induced Seismicity
— Understanding Crustal Earthquakes
— Earthquake Magnitude and the Richter scale
— The Critically-Stressed Crust
— Triggered Seismicity and Induced Seismicity
— Characterizing the Potential for Triggering Fault Slip

* Presentation 2 - Seismicity Induced by Waste Water Injection and
Hydraulic Fracturing

— Waste water injection and triggered seismicity
— Case studies

— Hydraulic fracturing and induced seismicity

— Case Studies

— How to plan and manage potential risks

— Specific baseline data required

— Recommendations on baseline data collection



Baseline Data Requirements

* Historical Seismicity

* Active Faulting

» Geomechanical Model

 Utilize Optimal Formations for Injection

» Seismic and Pressure Monitoring



Diamate et al. (2003)

Colombia
Magnitude
O
O
T2°W

Depth (km)

® 60-170

T4°W

O
O
&
9
O
@)
=
Vs
Q
=z
(qv)
>
O
-
)
-
(qV)
L

T6°W

TEW

8°N
6°N
4°N
N
80°W

0°



Seismotectionics of Northern South America
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