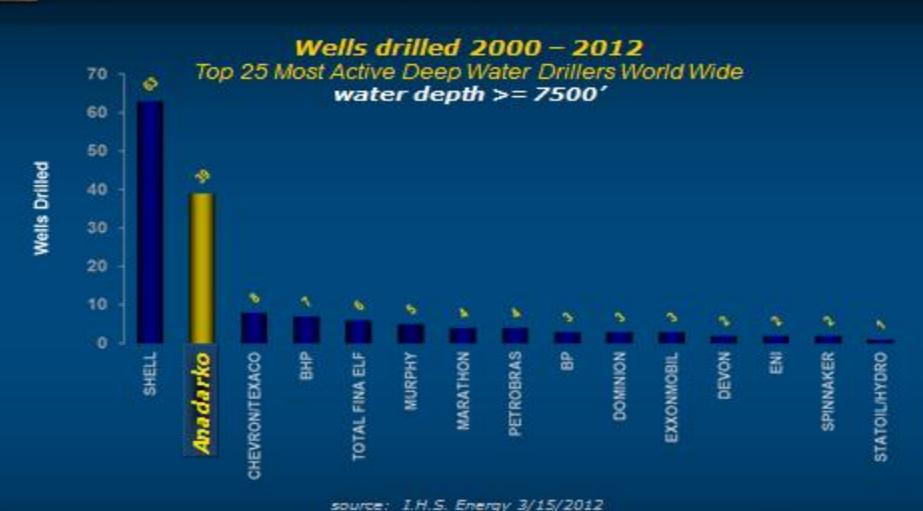


Environmental and Social Planning for Offshore Hydrocarbon E&P Projects

AGENDA – Offshore Drilling


- 1) Introduction Anadarko International Deepwater Drilling
- 2) Types of MODUs and Specialized Equipment
- 3) Planning and Preparation
- 4) Mobilization
- 5) Execution
- 6) Demobilization
- 7) Treatment and disposal of Drilling Fluids

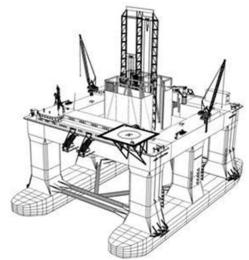
Introduction - Anadarko International Deepwater Drilling

Introduction - Anadarko International Deepwater Drilling

Deep Water Drilling Experience

TYPES OF Mobile Offshore Drilling Units (MODU)

Bottom Supported MODU


- Jack-up
- Submersible
- Maximum water depth ±190m for Ultra-Premium Jackups

Floating MODU

- Semi-submersible
- Drill ship
- Either can be moored (anchored) or dynamically positioned (DP)
- Water depths to 4,000m

Key Elements

- Self-contained for extended periods
- Includes drilling package, cranes, material storage, crew accommodations, heliport, power generation
- Requires Vessel Support to Supply



TYPES OF MODU's - JACKUP

Bottom Supported MODU - Jackup

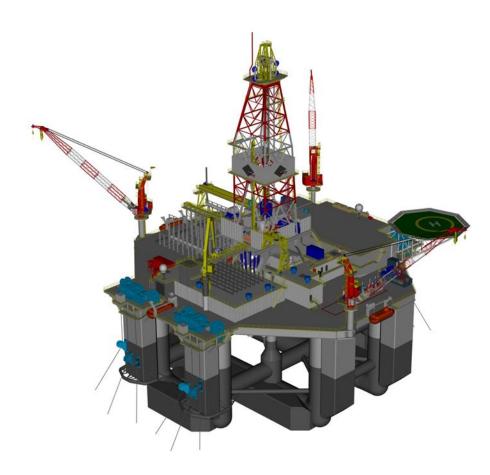
- Towed to location with barge afloat
- Movable legs lowered to seafloor
- Pre-load required prior to "jacking up" into position
 - Reduce the risk of "punch through"
- Barge is raised out of water by jacking against the legs
- Provides very stable platform
 - No Movement in Work Platform
- Drilling depths to 12,000m
- Maximum water depth ±150m

TYPES OF MODU's – Floating Rigs

- Typically, in water depths >150m, bottom supported rigs become impractical, and the industry uses floating rigs in water depths exceeding 150m
- Floating MODU types
 - Semi-submersible barge
 - Drill ship
- Floating rigs can be moored (anchored) subject to limitations of anchor chain-cable and winch systems or dynamically positioned (DP)
- Additional equipment is required to accommodate vessel movement (heave, pitch and roll)
 - Motion compensation system
 - Subsea blowout preventers (BOP) & Controls
 - Marine riser system
 - Remotely operated vehicle (ROV)

TYPES OF MODU's - Moored vs. DP

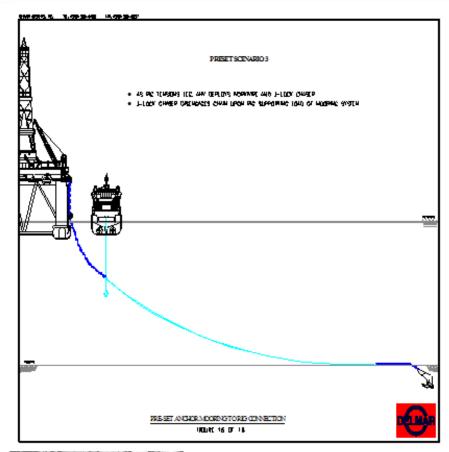
■ Moored – is practical to water depth limits of ±1,500m


- Material storage is limited by buoyancy & deck space, ± 4,000 MT
- Weight & storage volume of mooring wire & chain require large/ heavy duty winching systems

■ DP – is practical to water depth limits of ±3,658m

- Ship shape designs have much more deck/hold area than semisubmersibles
- Load capacity often exceeds 20,000 MT for late generation drill ships
- Limiting factor is ability to hold top tension on the marine riser
- Seafloor transponders & GPS are used to establish well location and maintain position
- Multiple DP thrusters operate 24hr/day to maintain the ships position over the well
- The MODU's stability is maintained by the transfer of sea water into dedicated ballast storage compartments.

TYPES OF MODU's - Moored Semi-submersible


- Towed to drill site at shallow draft
- At drill site, the mooring system is deployed (utilizing AHV), and the MODU is held in place w/ anchor & chain
- After mooring, the hull is ballasted down to provide stability and lower the COG.
- This design offers better motion characteristics than early drill ship designs
 - Smaller water plane profile & lower center of gravity minimizes vessel motion

TYPES OF MODU's - Mooring Operations

- Anchor mooring & recovery may require up to 6-8 days
- Anchor setting is further complicated by too soft, too hard, or uneven seafloor conditions
- Requires very specialized, high HP vessels, winches & crews to safely place anchors in the desired pattern



TYPES OF MODU's - Dynamically Positioned Drill Ship

- Vessel sails to site under its own power
- Vessel remains on station using 'dynamic positioning' (DP)
- DP set up is much faster, since mooring is not required (6-18hr vs 6 days) and transponder retrieval is also faster
- Multiple DP thrusters operate 24hr/day to maintain the ships position over the well
 - The MODU's stability is maintained by the transfer of sea water into dedicated ballast storage compartments.


Higher fuel usage due to significant power required to operate

thrusters 24hr/day

TYPES OF MODU's - Dynamic Positioning

- Initial position established by global positioning system (GPS)
- Seabed transponders (4 to 6) deployed in predetermined pattern w/ ROV
- Absolute position is continuously received from the vessel's GPS system
- Vessel's acoustic transceiver regularly queries the seabed transponders to determine relative position
- Computer processes inputs and adjusts power
 & azimuth of thrusters to hold the rigs position

Bolette Dolphin

Construction: HHI at Ulsan S. Korea

Design: MSC P10000 Drillship

Dimensions: 752' x 118'/229 m x 36 m

Dual Derrick: (NOV)

• Water Depth: 12,000'/3658 m

Drilling Depth: 40,000'/ 12,192 m

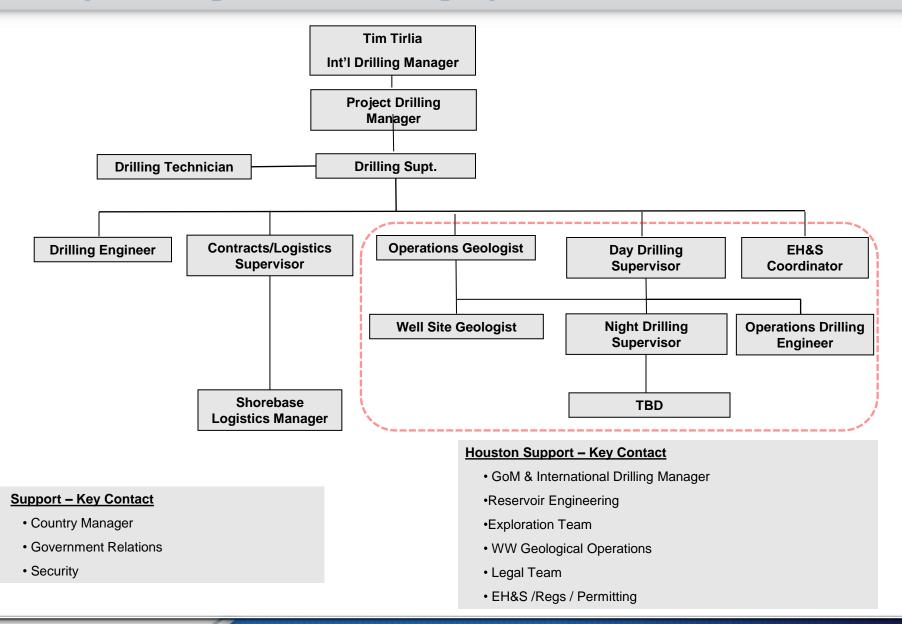
Variable Deck Load: 20,000 m-tonnes

Quarters: 210 beds

• Thrusters: 6 x 5500 kw x 1.35 (44,500 hp)

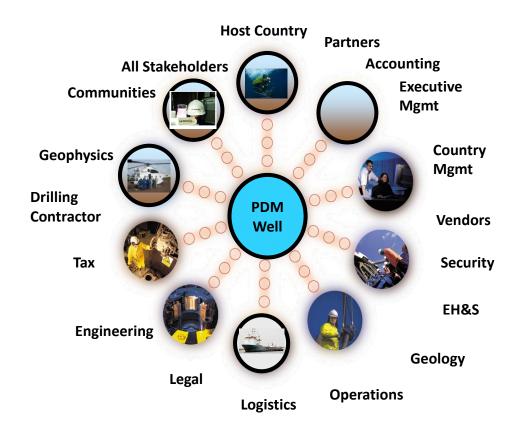
Power Generation: 6 x 8000 kw x 1.35 (64,800 hp)

2 BOP / LMRP Stacks

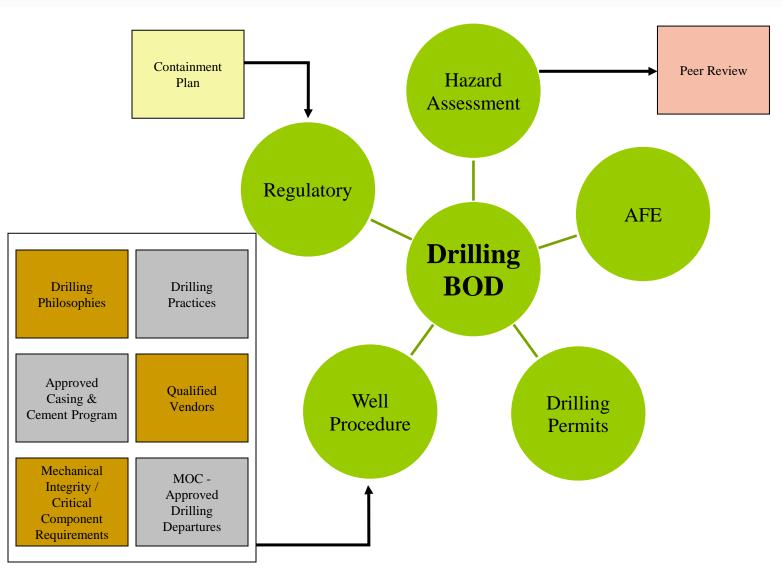

Remotely Operated Vehicle (ROV)

- Provide subsea monitoring & intervention capability
 - High resolution video
 - Manipulation of simple tools &/or BOP controls
- Perform seafloor surveys
- Placement of seabed transponders
- Visual operation of riserless operations
- Inspection of wellhead, riser and BOP

Planning and Preparation: Developing a Team


Planning and Preparation: Plan for the Unknowns

International Drilling Campaigns – Deep Water


- Early Commitment to Drilling Schedule
- Work Scope / Cost Creep
- Rig & Equipment Importation/Exportation
- Managing FCPA
- Staffing from Exploration to Development
- Managing Expectations
- Managing the Unknowns
- Performance on first attempt
- Security Protection
 - Law Enforcement/Military Relations
 - Establish Rules of Engagement
 - Piracy Plan

Planning and Preparation

Planning and Preparation: Develop the well Basis of Design (BOD)

Planning and Preparation: Capping Stack

APC is a member of Wild Well **Control**

> with access to:

- Debris Removal Equipment
- Subsea Dispersal Materials & Equipment
- Capping Stack
- Technical Expertise (Planning & Execution)

Planning and Preparation: Complexities of Deepwater Drilling


Drilling

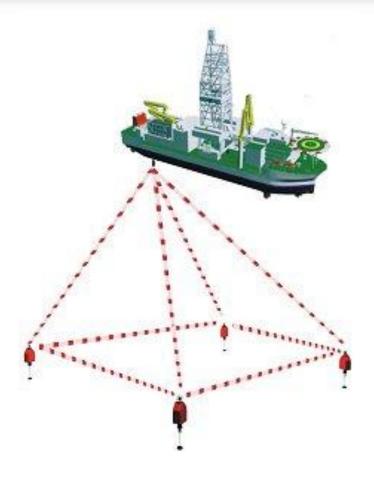
- Tight Margin Between Fracture Gradient & Pore Pressure
- Hydrate Formation during Well Control
 - Gas & Water at pressures Form Ice
 - Typically Use LTSBM (Non-water Based)
- Kick Detection
 - Avoid Riser Evacuation
 - Significant portion of circulating volume above BOPs
 - 15 bbl/9.2 ppg kick @ 3300 mtrs=34 bbls @ 1468 mtrs or 5300 bbls @ surface
- Variability of Temperature
 - Surface Ambient
 - *Mudline* 36-42°F
 - Bottom Hole Temperature >150°F
- Operational Cost
 - ±1MM US\$/day

Rig Related

- Environmental, Health & Safety
 - +/-160 Personnel onboard
 - Maintaining Acceptable Culture
- Station Keeping
- Coordination between Departments
 - Marine
 - Mechanical
 - Drilling
- Complexity of Systems
 - BOP Control System
 - Marine Systems
- Maintenance of Systems
 - Offline Maintenance
 - Preventative Maintenance
 - Rig Repairs

Planning and Preparation: Pore Pressure/Frac Gradient Curve

TYPES OF MODU's - Dynamically Positioned Drill Ship


- Vessel sails to site under its own power
- Vessel remains on station using 'dynamic positioning' (DP)
- DP set up is much faster, since mooring is not required (6-18hr vs 6 days) and transponder retrieval is also faster
- Multiple DP thrusters operate 24hr/day to maintain the ships position over the well
 - The MODU's stability is maintained by the transfer of sea water into dedicated ballast storage compartments.

Higher fuel usage due to significant power required to operate

thrusters 24hr/day

TYPES OF MODU's - Dynamic Positioning

- Initial position established by global positioning system (GPS)
- Seabed transponders (4 to 6) deployed in predetermined pattern w/ ROV
- Absolute position is continuously received from the vessel's GPS system
- Vessel's acoustic transceiver regularly queries the seabed transponders to determine relative position
- Computer processes inputs and adjusts power
 & azimuth of thrusters to hold the rigs position

Bolette Dolphin

Construction: HHI at Ulsan S. Korea

Design: MSC P10000 Drillship

Dimensions: 752' x 118'/229 m x 36 m

Dual Derrick: (NOV)

• Water Depth: 12,000'/3658 m

Drilling Depth: 40,000'/ 12,192 m

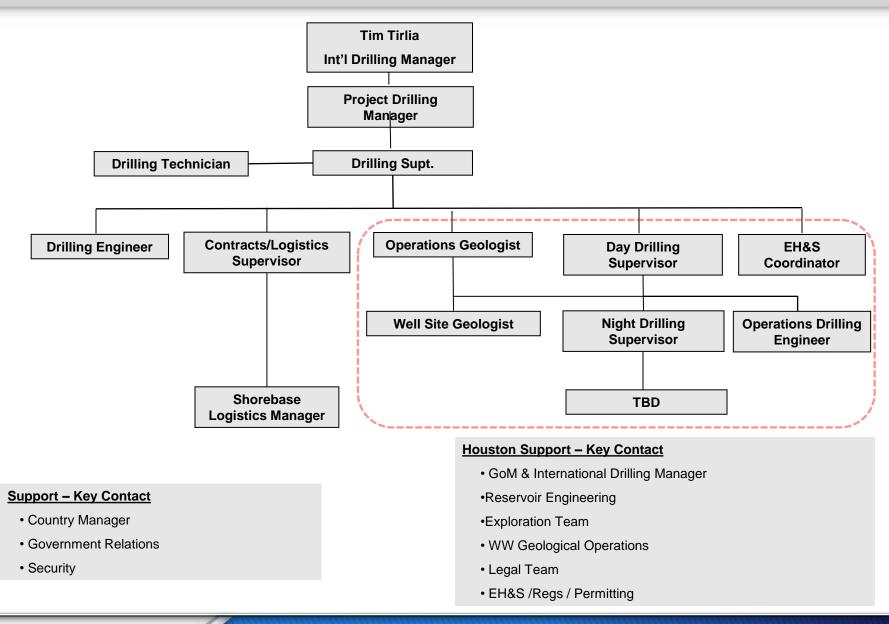
Variable Deck Load: 20,000 m-tonnes

Quarters: 210 beds

• Thrusters: 6 x 5500 kw x 1.35 (44,500 hp)

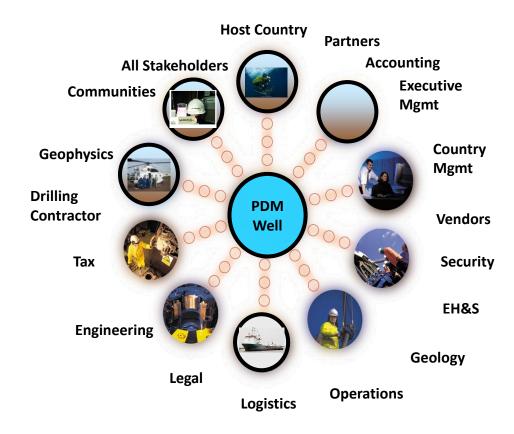
Power Generation: 6 x 8000 kw x 1.35 (64,800 hp)

2 BOP / LMRP Stacks

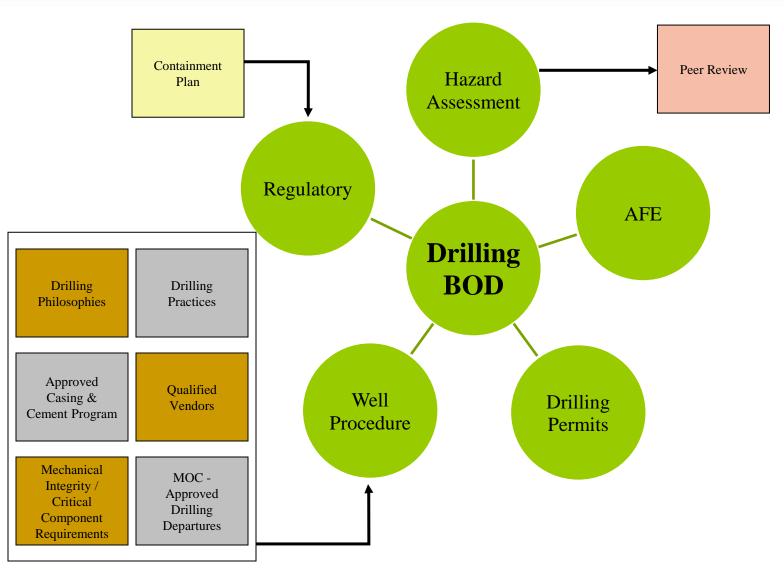

Remotely Operated Vehicle (ROV)

- Provide subsea monitoring & intervention capability
 - High resolution video
 - Manipulation of simple tools &/or BOP controls
- Perform seafloor surveys
- Placement of seabed transponders
- Visual operation of riserless operations
- Inspection of wellhead, riser and BOP

Planning and Preparation: Developing a Team


Planning and Preparation: Plan for the Unknowns

International Drilling Campaigns – Deep Water


- Early Commitment to Drilling Schedule
- Work Scope / Cost Creep
- Rig & Equipment Importation/Exportation
- Managing FCPA
- Staffing from Exploration to Development
- Managing Expectations
- Managing the Unknowns
- Performance on first attempt
- Security Protection
 - Law Enforcement/Military Relations
 - Establish Rules of Engagement
 - Piracy Plan

Planning and Preparation

Planning and Preparation: Develop the well Basis of Design (BOD)

Planning and Preparation: Capping Stack

APC is a member of Wild Well Control

> with access to:

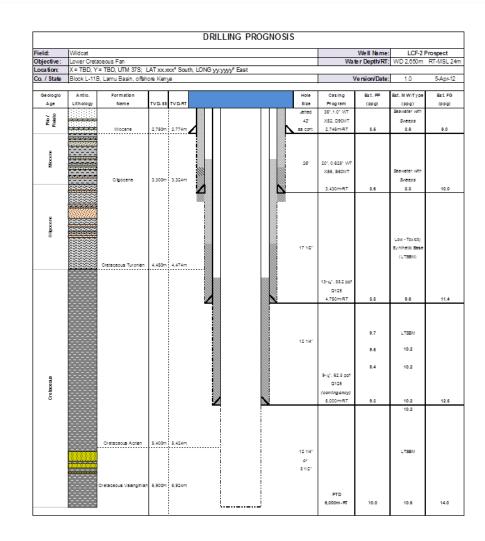
- Debris Removal Equipment
- Subsea Dispersal Materials & Equipment
- Capping Stack
- Technical Expertise (Planning & Execution)

Planning and Preparation: Complexities of Deepwater Drilling


Drilling

- Tight Margin Between Fracture Gradient & Pore Pressure
- Hydrate Formation during Well Control
 - Gas & Water at pressures Form Ice
 - Typically Use LTSBM (Non-water Based)
- Kick Detection
 - Avoid Riser Evacuation
 - Significant portion of circulating volume above BOPs
 - 15 bbl/9.2 ppg kick @ 3300 mtrs=34 bbls @ 1468 mtrs or 5300 bbls @ surface
- Variability of Temperature
 - Surface Ambient
 - *Mudline* 36-42°F
 - Bottom Hole Temperature >150°F
- Operational Cost
 - ±1MM US\$/day

Rig Related

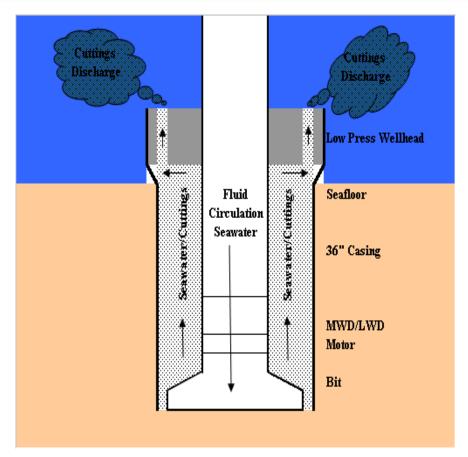

- Environmental, Health & Safety
 - +/-160 Personnel onboard
 - Maintaining Acceptable Culture
- Station Keeping
- Coordination between Departments
 - Marine
 - Mechanical
 - Drilling
- Complexity of Systems
 - BOP Control System
 - Marine Systems
- Maintenance of Systems
 - Offline Maintenance
 - Preventative Maintenance
 - Rig Repairs

Planning and Preparation: Pore Pressure/Frac Gradient Curve

Planning and Preparation: Pre-Drill Planning

- Four casing strings typical
 - Isolation of perceived / potential pressure regimes
 - Well control requirements
 - Hole sizes compatible with evaluation program
 - Common international program
- Low toxicity, synthetic base mud (LTSBM) selected to avoid formation of gas hydrates during possible well control events

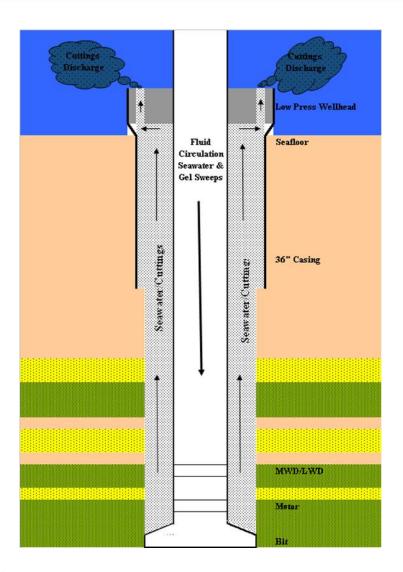
Planning & Preparation: Typical Formation Evaluation Objectives


	26" Hole	17-1/2" Hole	12-1/4" Hole	8-1/2" Hole
Samples	-N.A	10m	10m 3m during show	10m 3m during show
Mud Log	-N.A	Drilling Parameter Mud Gas Lithology	Drilling Parameter Mud Gas Lithology	Drilling Parameter Mud Gas Lithology
Geochemistry	-N.A	Post-Drill	Post-Drill	Post-Drill
Biostratigraphy	-N.A	Post-Drill	Post-Drill	While Drilling
LWD	Gamma Ray Resistivity Sonic	Gamma Ray Resistivity Sonic	Gamma Ray Resistivity Sonic	Gamma Ray Resistivity Sonic
Open Hole Logs	-N.A	-N.A	Gamma Ray Induction Resistivity Density Neutron Sonic Micro-Imager Magnetic Borehole Siesmic Formation Pressure Fluid Sample	Gamma Ray Induction Resistivity Density Neutron Sonic Micro-Imager Magnetic Borehole Siesmic Formation Pressure Fluid Sample

Mobilization

- Rig scheduled to be mobilized from it's last work location (West Africa) to Columbia → ± 1 month
- Upon arriving in country it will go through immigration & customs clearance and undergo any required inspections at location
- The rig will be resupplied with required goods
- Upon arriving on location, the rig will set out DP beacons or deploy anchors depending on water depth & rig type
- ROV will performs a site survey of the well area prior to beginning operations

Execution: (1) **Jet-in the Structural Casing**

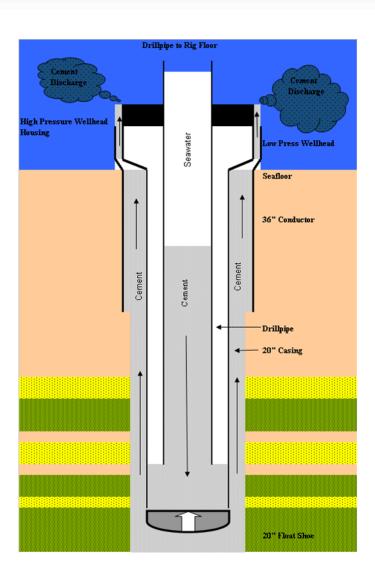

Purpose

- Primary Support for H/P wellhead & subsequent casing strings
- Relies on Sediment to Pipe Friction

Procedure

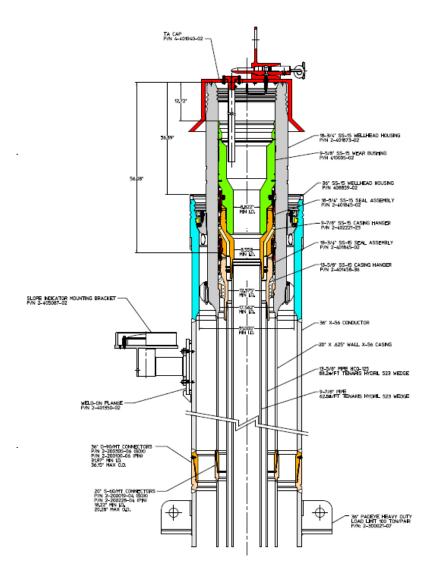
- Make up 36" casing string & L/P WH
- Run 26' bit & drill pipe inside 36", with WH running tool
- Engage L/P WH w/ running tools
- Run 36" casing to seafloor on drill pipe
- Begin pumping seawater down drill pipe to wash out sediments
- Lower 36" to desired penetration
- Shut down pumps and allow sediments to relax and hold 36" via skin friction

Execution: (2) Drill 26" Hole to Conductor Casing Depth


Purpose

- Provide Adequate Formation Strength
 - Achieve Returns to Surface
 - Support Mud Column
 - Provide for Ability to control well
- Typically 500-1200m bML

Procedure


- After 36" is secured, release the wellhead running tools
- Resume pumping seawater and drill 26" hole
- Pump occasional sweeps of viscosified fluid (bentonite or guar gum) to clean cuttings from the hole
- Observe returns to the sea floor with the ROV's video system
- At desired depth, displace the hole with viscosified mud to stabilize while drill pipe is removed and casing is run in the hole

Execution: (3) Run & Cement 20" Conductor Casing

- Make up 20" casing
- Run inner cementing string
- Make up H/P WH on top of inner string, and attach to 20"
- Pick up and run 20" casing on drill pipe
- Stab the 20" into the L/P WH using ROV video to position rig as required
- Lower the 20" and land HPWH in LPWH
- Pump cement from casing shoe to mud line
- Release running tools and remove inner string

Execution – Subsea Wellhead

Low Pressure Housing

- Turquoise color
- Provides landing profile for HPWH
- Transfers loads into the 36" structural casing

High Pressure Housing

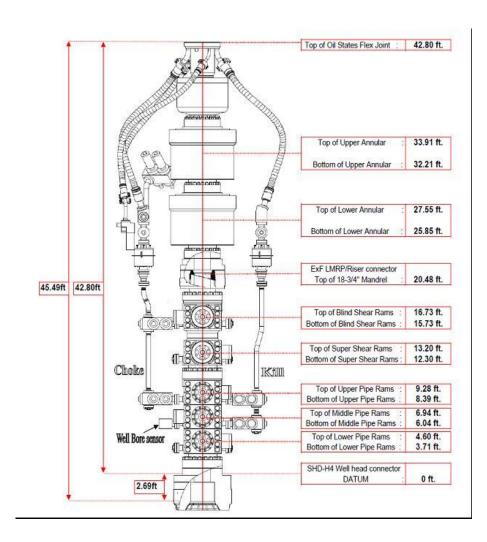
- Gray color
- 15,000 psi pressure rating
- Contains landing profiles for casing strings smaller than 20"
- Provides profile to connect BOP and marine riser to wellhead

Casing Hangers and packoffs

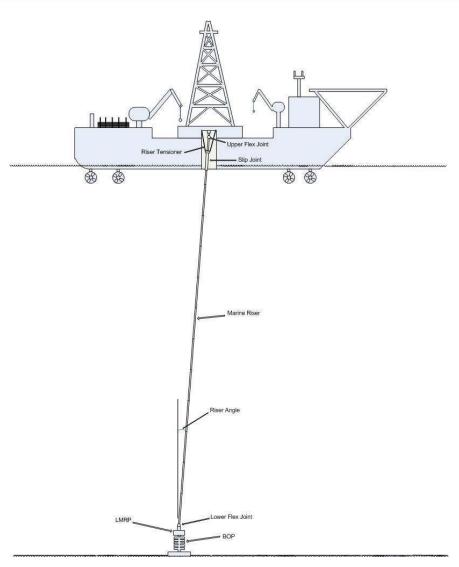
- Orange & lime green colors
- Supports casing string and seals annulus

Execution: Typical Subsea BOP

5 Ram Preventers

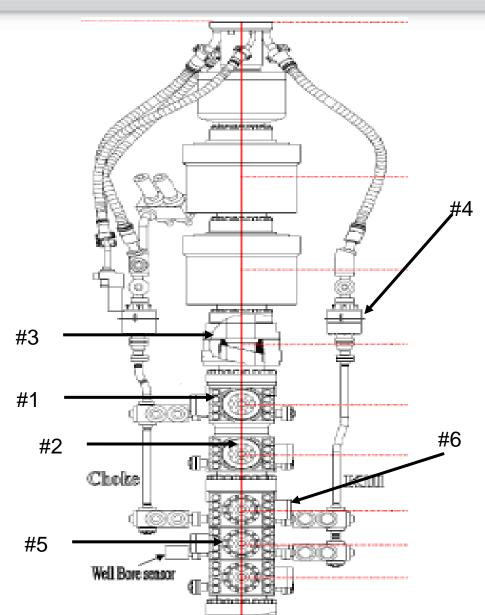

- 18-3/4", 15,000 psi WP
- Super shear rams capable of severing tube of all drill pipe and HWDP in use
- Blind shear rams capable of complete closure
- Lower ram cavity utilized as test ram

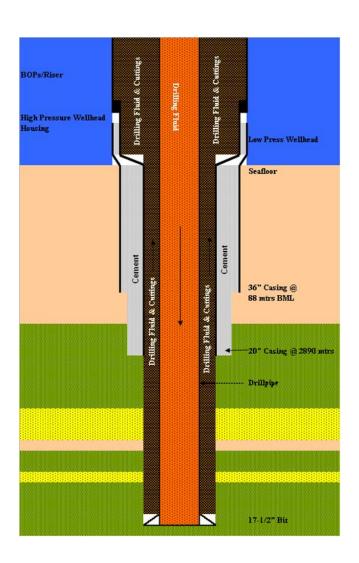
2 Annular Preventers


• 18-3/4", 10,000 psi WP

Functionality via

- 3 surface control panel
- Simrad acoustic system
- ROV

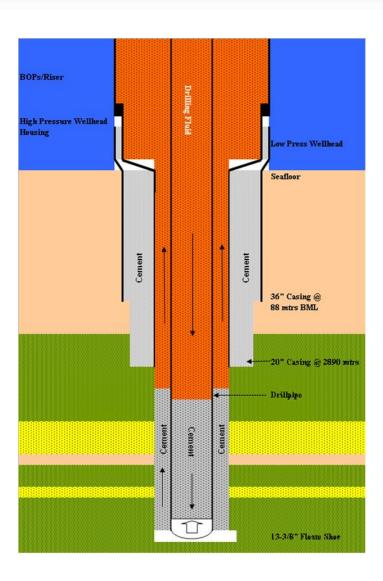

Execution: Run Marine Riser & Subsea BOP


- Large diameter, hydraulic conduit
 - Allow fluids to transit from seafloor to vessel w/o contacting seawater
- Marine riser held motionless relative to seafloor
 - Vessel heave accommodated by telescoping "slip joint"
 - Vessel position & riser tension is managed to maintain low angles at top joint and BOP

Subsea BOP – Emergency Disconnect

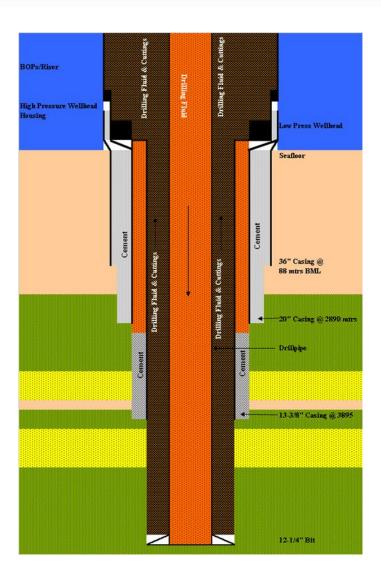
- Manual initiation
- Automatic functionality
- 1) Blind Shear Rams close
- 2) Super Shear Rams close
- 3) Riser connector unlock
- 4) Collet connectors unlock
- 5) Middle Pipe Rams close
- 6) Upper Pipe Rams close

Execution: (4) Drill 17-1/2" Hole to Surface Casing Depth


Purpose

- Provide Formation Integrity to reach Objectives
 - Support Mud Column
 - Provide for Ability to control well
 - Not Conducive to Logging (large hole)
- Typically set above first Well Objective

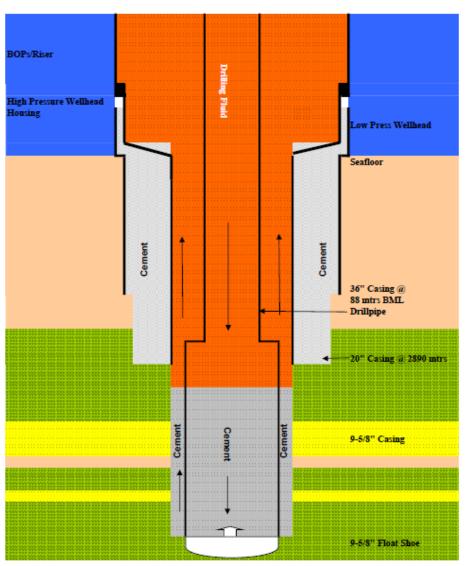
Procedure


- Makeup and run the 17-½" drilling assembly
 - Bit
 - Logging While Drilling Tools / lWT
 - Drill collars & stabilizers
- Displace well to Low Toxicity Synthetic Base Mud (LTSBM)
 - Effectively Inhibits Hydrate Formation
 - Stabilizes reactive formations
 - Minimizes Hole Problems relative to Water Based Mud
- Drill 20" shoe track, perform Leak-off Test (LOT)
- Drill to casing point & condition mud
- Trip out of hole for casing

Execution: (5) Run & Cement 13-3/8" Surface Casing

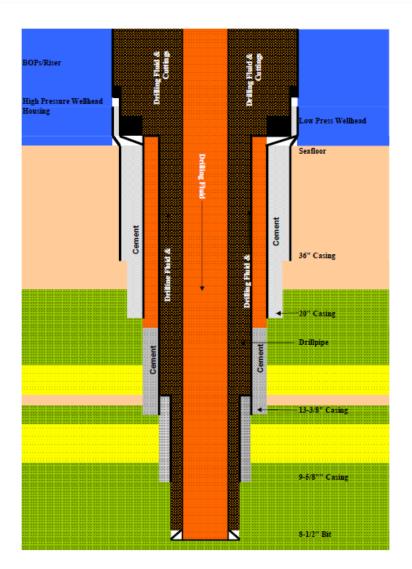
- Make up 13⁵/₈" casing, casing hanger and packoff
- Run 13⁵/₈" casing on drill pipe
- Lower the 13%" and land the casing hanger in the HPWH
- Pump cement
- Release running tools
- Set & pressure test annular packoff
- Remove landing string

Execution: (6) Drill 12-1/4" Hole


Purpose

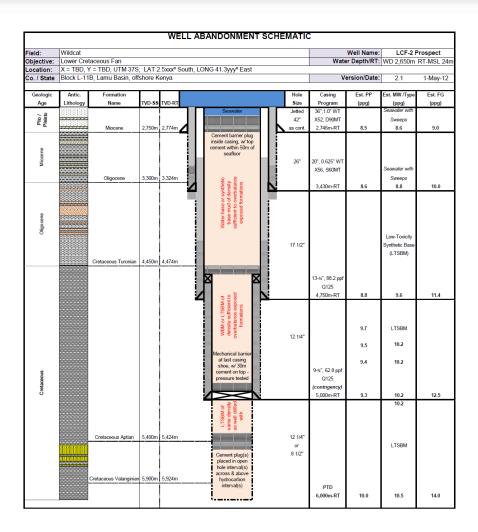
- Provide Formation Integrity to reach Objectives
 - Support Mud Column
 - Provide for Ability to control well
 - Conducive to Logging
- Typically TD Hole Size
 - Full Wireline Evaluation Capability

Procedure


- Makeup and run the 12¼" drilling assembly
 - Bit
 - Logging While Drilling Tools
 - Drill collars & stabilizers
- Drill 13-3/8" float equipment
- Test BOP if required
- Perform LOT to ascertain good cement job and formation integrity
- Drill to next casing point
- Circulate and condition mud
- Trip out of hole for formation evaluation logs

Execution: (7) Run & Cement 9-5/8" Liner

- Setting Depth Based on Pore Pressure/Fracture Gradient
- Drilled with LTSBM
 - Full Wireline Evaluation Capability
- Full Well Control Capability
- Top of Cement to Liner Top

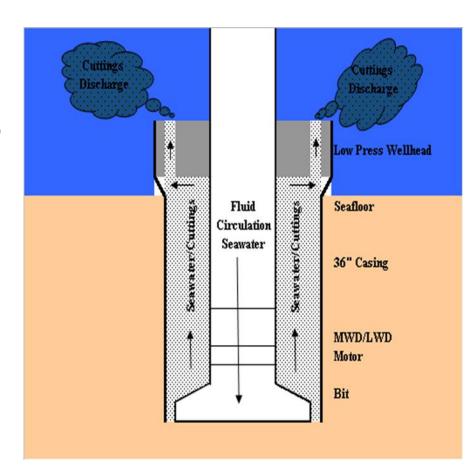

Execution: (7) 8-1/2" Production Hole (If Required)

- Total Depth based on Exploration Objectives
- Full Wireline Capability
- Full Well Control Capability
- 7" Liner Material Available if Justified
- Ideally used as a Contingency hole section in order to "Manage the Unknowns"

Execution: (8) Abandonment

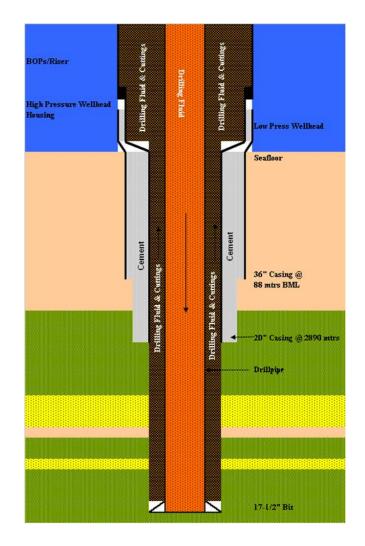
- Isolate exposed formations in the well bore with tested mechanical barriers
 - Utilize cement plugs (gray) in open hole – placed opposite and above hydrocarbon intervals, leaving -
 - 'Void' intervals filled with drilling fluid of sufficient density to overbalance exposed formation after the riser is removed
 - Utilize a combination of cement and mechanical plugs inside casing

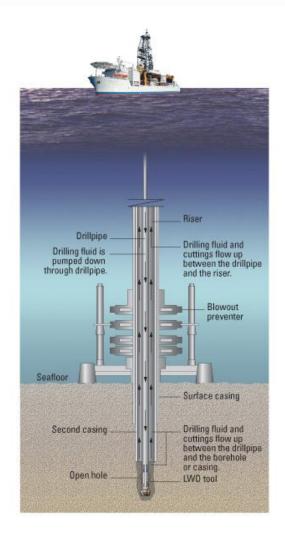
DeMobilization


- ROV performs a site survey prior to departure from location to ensure the seafloor is clear
- Rig will recover DP beacons or anchors depending on rig type
- Rig will then travels to it's next location either in Columbia or exit the country

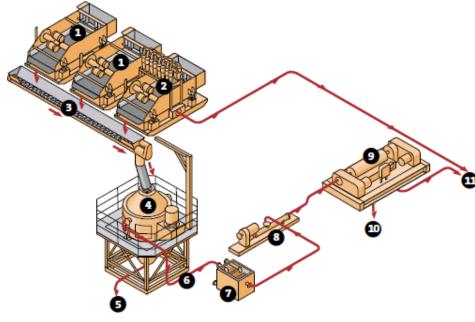
Treatment and Disposal of Drilling Fluid

Top Hole


- Seawater is used to drill the top hole sections and is circulated back into the ocean
- There is no riser connected at this point, therefore the cuttings settle to the seafloor naturally
- The seawater is not treated but occasional non-toxic viscosified sweeps are pumped to flush the cuttings from the wellbore
- Before running the casing string, water based mud is pumped into the hole to provide hole stability until the casing is in place


Treatment and Disposal of Drilling Fluid

Intermediate and Production Hole Sections


- LTSBM is used to drill these sections to prevent hydrates and to prevent hole stability issues from sensitive formations.
- The mud and cuttings are circulated back to the rig through the riser were the cuttings are separated through a series of equipment.
- After separation, the mud is cleaned and re-conditioned and the formation drill cuttings are disposed of in the ocean.
- At the end of the well, all LTSBM is either re-injected or sent back to shore to be recycled or disposed of at dedicated waste treatment facilities.

Drilling Fluid Circulating System

VERTI-G with Auger Feed

- Flow-line shaker
- 2 Mud cleaner
- Screw conveyor
- VERTI-G cuttings dryer
- Cuttings discharge
- 6 Recovered mud

- Catch tank
- Centrifuge feed pump
- Oentrifuge
- Solids discharge
- Clean mud to active