UNIVERSIDAD NACIONAL DE COLOMBIA S E D E B O G O T Á

PROYECTO PLAN DE CUBRIMIENTO SÍSMICO NACIONAL Y DISEÑO DE PROGRAMAS DE ADQUISICIÓN SÍSMICA 2D REGIONAL Y SUB-REGIONAL DE LA ANH 2009-2025

TOMO II.

DISEÑO DE PROGRAMAS DE ADQUISICIÓN SÍSMICA 2D (ONDA P) EN COLOMBIA

CONTENIDO

1. INTRODUCCIÓN	62
1.1 Ubicación y localización de líneas sísmicas	
1.2 Metodología por Área de Exploración	64
	64
2.1 Densidad de información geofícica en Colombia	
2.1 Densidad de información geonsica en colombia	
2.2 ropografia	
2.3 Gravinieura y magnetometria	
2.4 Geológia	
3. DISENO SISMICO PARA CADA AREA DE EXPLORACION	
3.1 Area de Exploración 1: Caribe Norte Costa afuera y Caribe Sur Costa Afuera	
3.1.1 Trazado de lineas sismicas	
3.1.2 Geologia y parametros geofisicos	
3.1.3.1 Parametros de diseno	
3.1.3.2 Estadísticas de diseno	
3.1.3.3 Analisis del diseno.	
3.2 Area de Exploración 2: Caribe Norte	
3.2.1 Trazado de lineas	
3.2.2 Geologia y parametros geofisicos	
3.2.3 Diseno Sismico	8:
3.2.3.1 Parametros de diseno	83
3.2.3.2 Estadísticas de diseno	8:
	8:
3.3 Area de Exploración 3: Zona Caribe Sur	
3.3.1 Trazado de lineas	
3.3.2. Geologia y parametros geofisicos.	
3.3.3. <i>Diseno</i>	
3.3.3.2. Estadísticas de diseno	
3.4 Area de Exploración 4: Pacífico Norte Costa Afuera, Pacífico Sur Costa Afuera, Pacífico Norte	y Pacifico
Sur	
3.4.1 Trazado de Ilheas	
3.4.2 Geologia y parametros geonsicos	
2.4.2.1 Devémetres de diseñe	
3.4.3.1 Parametros de diseño	
3.4.3.2 Andrisis del diseno	
3.5 Area de Exploración 5: Central, Llanos Orientales – Orinoquia y Cordinera Oriental	10
2.5.1 Mazdul de IIIIeds	
2.5.2 Ocologia y parallectos geolisicos	104 104
2.5.2 UISEIIU	
2.5.3.1 ralalleuros de diseño	
3.5.3.2 Lotauioutas ut uisti 10	

3.6 Área de Exploración 6. Zona 11 Sur.	109
3.6.2 Diseño	112
3.6.2.1 Parámetros de diseño	112
3.6.2.2 Estadísticas de diseño	112
3.6.2.3 Análisis del diseño	112
4. RESULTADOS	
5 CONCLUSIONES Y RECOMENDACIONES	
BIBLIOGRAFÍA	

LISTA DE FIGURAS

Figura 25 . Mapa de densidad de información geofísica del territorio Colombiano (Color café rojizo indica baja densidad de información y las tonalidades fucsia indican alta densidad de información)67
Figura 26. Mapa del norte de Colombia, indicando el trazado de las líneas sísmicas en la zona Caribe Norte
Figura 27 . Diagrama de cubrimiento a 4500 m de profundidad, la flecha señala un cubrimiento de 75 para un número de ocurrencias de 1586677
Figura 28 . Diagrama de cubrimiento a una profundidad de 1500 m, este valor es menor al del <i>offset</i> más profundo, debido a que el diseño fue orientado a esa profundidad, donde está la unidad de interés más profunda de la zona
Figura 29. Histograma de <i>offsets</i>
Figura 30. Mapa de anomalía residual de Bouguer para la Cuenca Los Cayos
Figura 31. Mapa de anomalía residual de Bouguer para la Cuenca Colombia
Figura 32. Mapa de anomalía residual de Bouguer en la Cuenca Guajira Offshore
Figura 33. Mapa del norte de Colombia, indicando el trazado de las líneas sísmicas para la zona Caribe Norte
Figura 34. Diagrama de cubrimiento nominal a 4500 m de profundidad
Figura 35. Cubrimiento nominal para una profundidad de 1500 m,
Figura 36. Histograma de <i>offsets</i>
Figura 37. Anomalía residual de Bouguer para la Cuenca Cesar-Ranchería
Figura 38. Anomalía residual de Bouguer en la Cuenca Guajira
Figura 39. Mapa del norte de Colombia, indicando el trazado de las líneas sísmicas en la zona Caribe Sur
Figura 40. Diagrama de cubrimiento a 4500 m de profundidad
Figura 41. Cubrimiento para una profundidad de 1500 m
Figura 42. Histograma de <i>offsets.</i>
Figura 43. Mapa de anomalía de Bouguer, Cuenca del Catatumbo90
Figura 44. Anomalía residual de Bouguer en la Cuenca Sinú — San Jacinto

Figura 45. Anomalía residual de Bouguer en la Cuenca
Figura 46. Anomalía residual de Bouguer en la Cuenca
Figura 47. Anomalía residual de Bouguer en la Cuenca
Figura 48 . Mapa del Pacífico colombiano, mostrando e la zona del Pacífico
Figura 49. Diagrama de cubrimiento a 4500 m de profu
Figura 50. Diagrama de cubrimiento a 4500 m de profu
Figura 51. Zona Pacífico Marino 1500 m, cubrimiento p
Figura 52. Zona Pacífico Terrestre. Cubrimiento para un
Figura 53. Zona Pacífico Terrestre. Histograma de offse
Figura 54. Anomalía residual de Bouguer para la Cuenc
Figura 55. Mapa de anomalía de Bouguer, Cuenca Cau
Figura 56. Mapa de anomalía de Bouguer, Cuenca Cho
Figura 57. Mapa de anomalía de Bouguer, Cuenca Cho
Figura 58. Mapa de anomalía de Bouguer, Cuenca Pací
Figura 59. Mapa de anomalía de Bouguer, Cuenca Tur
Figura 60. Mapa de anomalía de Bouguer, Cuenca Tur
Figura 61 . Mapa del sureste de Colombia, mostrando Llanos Orientales-Orinoquía y Cordillera Oriental
Figura 62. Diagrama de cubrimiento nominal a 4500 m
Figura 63. Cubrimiento para una profundidad de 1500
Figura 64. Histograma de <i>offsets</i>
Figura 65. Mapa de anomalía residual de Bouguer para
Figura 66. Anomalía residual de Bouguer para la Cuenc
Figura 67. Anomalía residual de Bouguer para la Cuenc
Figura 68. Anomalía residual de Bouguer para la Cuenc

Sinú <i>Offshore</i> 90
de Urabá91
del Valle Inferior del Magdalena91
el trazado de las líneas sísmicas propuestas para 92
undidad97
undidad,97
para una profundidad de 1500 m,97
na profundidad de 1500 m,97
ets98
ca Amagá98
ıca-Patía98
осó99
ocó <i>Off-Shore</i> 99
ífico Profundo99
naco99
naco <i>Offshore</i> 100
el trazado de líneas sísmicas en la zona Central,
n de profundidad106
m
a la Cuenca Los Llanos107
ca de la Cordillera Oriental107
ca del Valle Medio del Magdalena108
ca del Valle Superior del Magdalena108

Figura 69. Mapa del Sur	l sur de Colombia mostrando el trazado de líneas sísmicas propue	stas para la Zona 110
Figura 70. Diagrama	a de cubrimiento a 4500 m de profundidad,	
Figura 71. Cubrimier	nto para una profundidad de 1500 m	113
Figura 72. Histogram	na de <i>offsets</i>	113
Figura 73. Anomalía	residual de Bouguer para la Cuenca de Vaupés-Amazonas	113
Figura 74. Mapa de a	anomalía residual de Bouguer de la Cuenca de Caguán — Putumay	o 114

LISTA DE TABLAS

Tabla 5 . Compilación de estudios aerotransportados, terrestres, marinos y satelitales de Gravimetría yMagnetometría de las cuencas sedimentarias de Colombia
Tabla 6. ParámetrosGeofísicosparalaExploracióndeHidrocarburosenColombia(Basada en la Información geológica y geofísica disponible)
Tabla 7 . Líneas sísmicas propuestas para la zona Caribe Costa afuera
Tabla 8 . Resumen de las características principales de la cuenca y parámetros geofísicos. 76
Tabla 9 . Parámetros geofísicos de diseño sísmico en la zona Caribe Costa afuera. 77
Tabla 10 . Parámetros de interés para el diseño sísmico77
Tabla 11 . Líneas sísmicas propuestas para el diseño sísmico para las cuencas de la zona Caribe81
Tabla 12 . Características geológicas y parámetros geofísicos de la zona Caribe Costa afuera82
Tabla 13. Parámetros de diseño sísmico
Tabla 14. Parámetros de diseño sísmico
Tabla 15 . Líneas sísmicas propuestas para la zona Caribe Sur. 87
Tabla 16 . Datos de geología y geofísica obtenidos para la zona Caribe Sur
Tabla 17. Parámetros de diseño sísmico para la zona Caribe Sur. 89
Tabla 18. Parámetros de interés para la zona Caribe Sur
Tabla 19. Resumen de líneas sísmicas propuesta para la zona Pacífico

Tabla 20. Resumen de datos geológicos y geofísicos pa
Tabla 21. Parámetros de adquisición sísmica para la zo
Tabla 22. Parámetros para la zona Pacífico Norte.
Tabla 23. Parámetros para la zona Pacífico Norte Marin
Tabla 24 . Líneas sísmicas propuestas para la zona o Oriental.
Tabla 25 . Datos geológicos y geofísicos de las zonas: Oriental.
Tabla 26 . Parámetros de diseño sísmico para las z Cordillera Oriental.
Tabla 27. Parámetros para la zona Central, Llanos Orie
Tabla 28. Líneas sísmicas propuestas para la Zona Sur
Tabla 29. Datos de la geología y geofísica de la Zona S
Tabla 30. Parámetros de diseño para la Zona Sur
Tabla 31. Parámetros adicionales para la Zona Sur

LISTA DE ANEXOS

Anexo 6. Formulación matemática para el cálculo de lo
Anexo 7. Zonas Caribe Norte Costa Afuera y Caribe Sur
Anexo 8. Interpretación Zona Caribe Norte Costa Afuer
Anexo 9 Interpretación líneas en la Zona Caribe Norte
Anexo 10 Interpretación líneas en la Zona Caribe Sur
Anexo 11 . Interpretación líneas de las Zonas Pacífico Pacífico Norte y Pacífico Sur.
Anexo 12 Interpretación líneas en la Zona Central, Llar
Anexo 13 Interpretación líneas en la Zona Sur

ara la zona Pacífico95
na Pacífico96
96
10
Central, Llanos Orientales-Orinoquia y Cordillera
Central, Llanos Orientales – Orinoquia y Cordillera 105
zonas Central, Llanos Orientales – Orinoquia y 106
ntales – Orinoquia y Cordillera Oriental106
ur

os parámetros geofísicos.

ır Costa Afuera.

ra

Norte Costa Afuera, Pacífico Sur Costa Afuera, nos Orientales- Orinoquia y Cordillera Oriental

1. INTRODUCCIÓN

El diseño sísmico 2D para el plan de cubrimiento sísmico nacional, se constituye en una de las etapas iníciales para el método sísmico de reflexión, con ello se hace necesario tener un trazado y diseño óptimo para garantizar una serie de líneas sísmicas 2D extendidas, en donde no se cuenta con mucha información o existen sectores que ameritan la adquisición de nuevos datos e información sísmica del subsuelo.

Un diseño sísmico requiere el establecimiento de parámetros de campo o de tendido, los cuales pueden ser adquiridos mediante información preliminar, datos procesados o interpretados. Regularmente, los diseños sísmicos se efectúan de manera poco ortodoxa, debido a la sobreutilización de análisis cualitativos en la interpretación de los datos; por tal motivo, se hace necesario crear una metodología que sirva como herramienta y soporte para el trazado de líneas sísmicas futuras.

A partir de la dificultad planteada, para este proyecto se implementó la metodología de Evaluación Multicriterio EMC, donde la información se presenta en forma matricial y geoestadística, para establecer una relación de diferentes variables, a través de los cuales se realizó un análisis predominantemente de tipo cuantitativo, saliéndose del esquema de los típicos análisis cualitativos. Mediante este análisis pudieron ser identificarlos los factores espaciales que tienen relación directa con las áreas consideradas potencialmente buenos prospectos y establecer su jerarquía dentro de esta relación; con esto y basados en las matrices resultantes, es posible obtener áreas propicias para el objeto de estudio. Los parámetros geofísicos para el análisis y cuantificación de la información incluyen: el cubrimiento de las líneas sísmicas, velocidades intervalares y de *RMS*, intervalos de grupo, intervalos de disparo, *cdps*, apertura de migración, offsets, entre otros. Esta información puede ser obtenida a partir de proyectos de adquisición anteriores, interpretaciones o de las secciones sísmicas (o registros de campo).

Sumado a lo anterior, se contó con la labor de compilación de estudios gravimétricos y magnéticos aerotransportados, marinos y terrestres del territorio colombiano a partir de los cuales se propone el diseño de líneas sísmicas regionales, estas a su vez serán integradas a otros criterios de diseño que incluyen aspectos geológicos, información de líneas sísmicas y pozos.

1.1 Ubicación y localización de líneas sísmicas

El análisis preliminar de líneas sísmicas se basó inicialmente en la localización y ubicación de acuerdo con la división del área de estudio en 11 zonas de interés para exploración geofísica, efectuada durante la fase del diagnóstico de la información disponible, (Tomo I, Figura 2); y se complementó con los análisis gravimétricos y magnéticos en los cuales se observó que existen zonas de interés entre los límites de las cuencas antes mencionadas; por lo tanto, se reagruparon en siete (7) áreas de exploración que incluyen las cuencas sedimentarias antes mencionadas. Estas áreas se describen a continuación:

- a. Los Cayos.
- b. Colombia.
- c. Guajira Offshore.
- d. Sinú Offshore,

Área de exploración 2. Incluye la Zona 3: Caribe Norte

- a. Guajira.
- b. Cesar Ranchería.

Área de exploración 3. Incluye la Zona 4: Caribe Sur

- a. Urabá.
- b. Sinú San Jacinto.
- c. Valle Inferior del Magdalena (Cuencas de Plato y San Jorge).
- d. Catatumbo.

Área de exploración 4. Incluye las Zonas 5, 6, 7 y 8: Pacífico Norte Costa Afuera, Pacífico Sur Costa Afuera, Pacífico Norte y Pacífico Sur.

- a. Pacífico Costa Afuera.
- b. Choco Costa Afuera.
- c. Tumaco Costa Afuera.
- d. Chocó.
- e. Amagá.
- f. Tumaco.
- g. Cauca Patía.

Área de exploración 5. Incluye las Zonas: Central y Llanos Orientales

- a. Valle Medio del Magdalena (VMM).
- b. Valle Superior del Magdalena (VSM).
- c. Cordillera Oriental.
- d. Llanos Orientales.

Área de exploración 6. Incluye la Zona 11: Sur

Área de exploración 1. Incluye las Zonas 1 y 2: Caribe Norte Costa Afuera y Caribe Sur Costa Afuera

- a. Caguán Putumayo.
- b. Vaupés Amazonas.

Zona no prospectiva.

Incluye aquellas áreas en las que la geología y geofísica no presentan condiciones para la exploración de hidrocarburos de acuerdo con el mapa de cuencas Sedimentarias de la Agencia Nacional de Hisrocarburos.

UNIVERSIDAD NACIONAL DE COLOMBIA SEDE BOGOTÁ

PROYECTO PLAN DE CUBRIMIENTO SÍSMICO NACIONAL Y DISEÑO DE PROGRAMAS DE ADQUISICIÓN SÍSMICA 2D REGIONAL Y SUB-REGIONAL DE LA ANH 2009-2025

1.2 Metodología por Área de Exploración

Para la obtención de los parámetros geofísicos, se utilizaron secciones sísmicas 2D en formato digital. Algunos parámetros como velocidades, horizontes de interés y datos del subsuelo se obtuvieron a partir de secciones sísmicas, informes previos o de algunos registros de pozo. También se recurrió a información de procesamiento a partir de las cajas de velocidades y la etiqueta de líneas sísmicas que se encuentran en formato físico o papel, donde se tiene información de: velocidades intervalares, RMS, tiempos, CDP's, cubrimiento, intervalo de grupo, intervalo de disparo, etc.

En la metodología se hace necesario incluir información como la adquisición de estudios geofísicos terrestres, marinos, aerotransportados y satelitales. Los datos terrestres han sido compilados a partir de la base de datos COLBASETIERRA.DAT y el programa ejecutable SEGBOUGTIERRA, suministrados por la ANH, los cuales permiten extraer información de un área específica determinando las coordenadas mínimas y máxima de longitud, latitud y el valor de densidad utilizada en la reducción de datos.

La información geofísica aerotransportada ha sido descargada del portal de la ANH (www.anh.gov.co), en la sección de estudios geológicos y geofísicos, y en la sección de estudios remotos (Tabla 5). La información del Caribe Colombiano ha sido obtenida del portal del US Geological Survey, www.usgs.gov., de los mapas gravimétrico y magnético de Norte América. Los datos satelitales de gravimetría y magnetometría han sido obtenidos de trabajos previos para el Noroeste de Suramérica (www.geociencias.unal.edu.co/ESRJ.htm, tabla 5).

ESTUDIOS AEROTRANSPORTADOS		Empresa
Adquisición, procesamiento e interpretación de datos de aeromagnetometría en el litoral Caribe, Contrato 073, Cuencas de Sinú, San Jacinto, Plato y San Jorge.		ANH.
Adquisición, procesamiento e interpretación de datos de aeromagnetogravimetría en las cuencas de Cesar-Ranchería, Alta y Baja Guajira y Alejo	2007	ANH.
La Cordillera Oriental Sector de Soápaga y el Piedemonte de La Cordillera Oriental - Llanos Orientales, Colombia	2009	ANH.
Levantamiento aerogravimétrico y aeromagnético Cuenca de los Llanos Orientales	2007	ANH.
Levantamiento aerogravimétrico y aeromagnético: Los sectores Norte y Oriental de la Cuenca de los Llanos Orientales de Colombia	2008	ANH.
Programa Aerogravimétrico y Aeromagnético de la Cuenca del Yarí - Caguán, Colombia Contrato No. 2052332	2006	ANH.

procesamiento e interpretación Adauisición, de datos aeromagnetogravimetría en el Litoral Pacífico de Colombia - contrato no.

procesamiento e interpretación de datos Adquisición, aeromagnetogravimetría en el Valle del Rio Cauca – contrato no. : 074

Levantamiento, aerogravimétrico y aeromagnético La Cuenca del Putu Colombia contrato nº 036

ESTUDIOS MARINOS Y TERRESTRES

Bases de datos gravimétricas terrestre y aérea, Colbasetierra. Secbougtierra

Bases de datos gravimétricas terrestre y aérea, Colbaseaire.dat y Secbou

Magnetic Anomaly Map of North America

Gravity Map of North America

ESTUDIOS SATELITALES

Crustal modeling of Northwestern South America from Champ magnetic of

Tectonic analysis of Northwestern South America from satellite, airborr surface potential field anomalies

MAPAS REGIONALES

New Gravity Map of Colombia CBAM

New Magnetic anomaly map of Colombia MAM

Tabla 5. Compilación de estudios aerotransportados, terrestres, marinos y satelitales de Gravimetría y Magnetometría de las cuencas sedimentarias de Colombia a partir la información suministrada por la Agencia Nacional de Hidrocarburos – ANH-, la revista Earth Sciences Research Journal y el US Geological Survey.

de 075	2006	ANH.
de	2006	ANH.
mayo,	2009	ANH.
	Año	Empresa
dat y	2010	ANH
ugaire	2010	ANH
	2002	USGS
		USGS
	Año	Empresa
lata	2008	ESRJ, Hernández, O.
ie and	2008	ESRJ, Hernández, O.
	Año	Entidad
	2008	ESRJ, ANH
	2008	ESRJ, ANH

CAPÍTULO II

TRAZADO DE LÍNEAS SÍSMICAS

2. TRAZADO DE LÍNEAS SÍSMICAS

Para el trazado por grupo de líneas sísmicas en cada área de exploración se empleó la siguiente información:

2.1 Densidad de información geofísica en Colombia

La Figura 25 representa el mapa de densidad total de información geofísica en Colombia; el color rojo indica baja densidad de información adquirida, y las tonalidades violetas indican un mayor grado de información. La información proporcionada por este mapa, corresponde al resultado gráfico de la aplicación del algoritmo elaborado por el Grupo de Trabajo de la Universidad Nacional para este proyecto y para la visualización del diagnóstico de la información disponible (Tomo I). Así mismo, el mapa (Figura 25), es utilizado para evitar redundancia en la información siendo una quía para trazar las líneas sísmicas 2D donde existe poca información geofísica adquirida (zonas en color rojo).

2.2 Topografía

Los mapas de topografía y batimetría (Tierra y mar respectivamente, Figura 15 - Tomo I) son utilizados en conjunto con el mapa de densidad de información (Figura 25) para trazar las líneas sísmicas en zonas de fácil acceso topográfico.

2.3 Gravimetría y magnetometría

Los datos de gravimetría y magnetometría proveen información de la distribución de las propiedades de densidad y susceptibilidad magnética del subsuelo permitiendo delimitar la geometría y espesor de cuencas sedimentarias. Esta información está siendo integrada con coberturas de geología de superficie, imágenes de sensores remotos, mapas de distribución de líneas sísmicas y pozos para realizar el diseño de líneas sísmicas regionales que aumentarán el conocimiento del subsuelo del país.

Para el análisis gravimétrico y magnetométrico de las cuencas se utilizaron dos fuentes de información:

- 1. Estudios gravimétricos y magnetométricos realizados para la Agencia Nacional de Hidrocarburos (ANH) y que se encuentran publicados en la página http://www.anh.gov.co y clasificados en el ítem de Información Geológica y geofísica dentro del área de métodos remotos. De estos informes se capturaron y georreferenciaron los mapas de anomalía de Bouguer, tope del basamento Cretáceo, inversión 3D del residuo controlado, interpretación estructural y los perfiles de modelaje gravimétrico y magnetométrico.
- 2. Adicional a esta información, se realizó un análisis gravimétrico con los datos existentes, para cada cuenca. Los resultados se contrastaron e incluyeron en los informes mencionados en el numeral 1.

2.4 Geología

Durante el diagnóstico de la información disponible (Fase inicial del proyecto), se realizó un estudio general de la geología de cada cuenca, a partir de la clasificación de 23 cuencas, incluidas en 11 zonas de interés para exploración. Estas zonas fueron enumeradas en la parte inicial de este informe y se identificaron las características generales: unidades estratigráficas, formaciones litoestratigráficas y los valores geofísicos de las zonas de interés (la velocidad del objetivo, espesor del objetivo, entre otros). Estas características fueron resumidas en el diseño de cada cuenca (Tabla 6). Debido a que el análisis geológico requirió de un amplio estudio y de la interpretación de las líneas sísmicas y de registros de pozo, esta información se incluye en el diagnóstico de la información (Tomo I).

2.5 Geofísica

La Tabla 6: PARÁMETROS GEOFÍSICOS PARA LA EXPLORACIÓN GEOFÍSICA DE HIDROCARBUROS EN COLOMBIA, resume toda la información referente a:

- Número de la Zona de Estudio.
- Nombre de la Zona de Estudio.
- Cuenca.
- Unidad Cronoestratigráfica. •
- Formación Litoestratigráfica: Roca Fuente.
- Formación Litoestratigráfica: Roca Almacén.
- Formación Litoestratigráfica: Roca Sello.
- Profundidad Aproximada del Target.
- Promedios Unidades Geológicas de Interés.
- Velocidad RMS.
- Velocidad Interválica.
- Cubrimiento.
- Longitud del Registro.
- Frecuencia Instantánea.
- Frecuencia Dominante.
- Buzamiento (Desviación).
- Buzamiento (Varianza). •

Con estos valores se calculan los parámetros para el diseño sísmico de cada cuenca, teniendo como base las ecuaciones del Anexo 6.

En cuanta más información referente a las formaciones de cada cuenca sea considerada, el diseño sísmico puede ser mejorado y optimizado. Debido al corto tiempo del proyecto fueron analizadas las líneas sísmicas disponibles y se seleccionaron los parámetros geofísicos más representativos de cada cuenca.

67

Tabla 6. Parámetros Geofísicos para la Exploración de Hidrocarburos en Colombia
(Basada en la Información geológica y geofísica disponible)

	CARACTERISTICAS GENERALES															
	ZONA			FORMACIÓ	ÓN LITOESTRATI	GRÁFICA	PROFUN	DIDAD	VELO	CIDADES (m/s)			FRECUEN	CIA (Hz)	BUZAMIENTO	(Radianes)
No	NOMBRE	CUENCA	UNIDAD CRONOESTRATIGRÁFICA (CÓDIGO)	ROCA FUENTE	ROCA ALMACÉN O RESERVORIO	ROCA SELLO	PROFUNDIDAD APROX. TARGET Pies (m)	PROMEDIOS UNIDADES GEOLÓGICAS DE INTERÉS Pies (m)	RMS	INTERVÁLICA	CUBRIMIENTO (Canales)	LONG. REGISTRO (s)	INSTANTANEA	DOMINANTE	DESVIACIÓN (Radianes)	VARIANZA (Radianes)
1	Caribe Norte	Colombia	N1-Sm	No Reporta	No Reporta	No Reporta	15.000 (4572)	9500 - 15000 (2900 - 4572)	2000 - 3200	3400	12 (48) - 120 (480)	6 - 8	20 - 50	10 - 30	0.30	0.1 - 0.2
	Costa Afuera	Guajira Offshore	E-Sm N1-Sm	Formación Castilletes	No Reporta	No Reporta	15.000 (4572)	10250 - 15000 (3125 - 4572)	2500 - 3000	3200	12 (48) -60 (240)	6 - 8	10 - 40	20 - 45	0.20	0.1 - 0.3
2	Caribe Sur Costa	Los Cayos	Oligoceno Tardío-Eoceno Temprano a Medio	No Reporta	Depósitos siliciclásticos del Eoceno y limolitas arrecifales del Miocene- Oligocene	Shales del Oligoceno - Mioceno	15000 (4572)	4000 - 15000 (1220 - 4572)	2000 - 4300	2800 - 4600	12 (48Can) - 60 (240 Can)	6 - 8	20 - 40	20 - 50	0.2	0.1
	Afuera	Colombia		No Reporta	No Reporta	No Reporta	15.000 (4572)	9500 - 15000 (2900 - 4572)	2000 - 3200	3400	12 (48Can) - 120 (480 Can)	6- 8	20 - 50	10 - 30	0.30	0.1 - 0.2
		Sinú Offshore		Shales de la Formación Cansona	Arenitas de la Formación Pavo	Arcillolitas de la Formación Floresanto	18.000 (5486)	9000 - 18000 (2750 - 5486)	2800 - 3400	3600	12 (48 Can) - 120 (240 Can)	6 8	20 - 50	30 - 70	0.40	0.3

		Guajira	Cretáceo Medio a Superior, Paleógeno-Neógeno	Formaciones Colón (Guaralamai), La Luna, Cogollo, Uitpa, Jimol y Castilletes	Formaciones La Luna, Cogollo, Macarao, Siamana, Uitpa y Jimol	Grupos Yuruma y Cogollo, Formaciones Colón, Siamana, Uitpa, Castilletes y Guaralamai	15.000 (4572)	10.000 - 15000 (3000 - 4572)	2000 	3400	12 (48 Can) - 120 (240 Can)	6	20 - 45	40 - 60	0.25	0.10
3	Caribe Norte	Cesar- Ranchería	Cretáceo-Paleógeno	Cesar: Formaciones Lagunitas, Aguas Blancas, Laja/La Luna y Molino; dentro de las cuales, Las Formaciones La Luna y Aguas Blancas presentan las mejores características de roca fuente (ANH-UNAL (2009))	Cesar: Formaciones Río Negro, Lagunitas, Aguas Blancas, Laja/La Luna, Delicias, Barco y La Jagua	Formación Palmito Shale y arcillolitas	7500 (2286)	4000 - 7500 (1220 - 2286)	1600 2500	2200	60 (240 Can) - 200 (800 Can)	8 - 12	20 - 60	30 - 60	0.30	0.1 - 0.2
				Ranchería: Formaciones Lagunitas, Aguas Blancas, Laja/La Luna y Manaure	Ranchería: Formaciones Lagunitas, Laja/La Luna, Hato Nuevo, manantial, Cerrejón y Palmito Shale											
4	Caribe Sur	Urabá	Eoceno-Oligoceno	No Reporta	No Reporta	No Reporta	18.000 (5486)	10000 - 18000 (3048 - 5486)	2000 - 2500	2700	12 (48 Can) - 120 (240 Can)	6	10 - 30	20 - 55	0.35	O2 - 04

Sinú-San Jacinto	N1-Sm N3N7-St Cretáceo Superior, Paleógeno-Neógeno	La Formación Ciénaga de Oro (Oligoceno- Mioceno Inferior) corresponde a la unidad más prospectiva de la Cuenca Sinú-San Jacinto; Formación Porquero Inferior; Formación Toluviejo (Eoceno Medio); y Formaciones Cansona del Cretáceo Superior (Campaniano- Maastrichtiano) y San Cayetano	Rocas terciarias, arenitas paleógenas, en los Campos Floresanto y Perdices. Formaciones Cansona, Toluviejo y Ciénaga de Oro	Formaciones Maco- Chengue, San Jacinto, Maralú, El Carmen y Floresanto	7500 (2286)	4000 - 7500 (1220 - 2286)	1600 2500	2200	12 (48 Can) - 120 (240 Can)	8 12	10 - 30	20 - 40	0.2 - 0.4	0.25
VIM (Cuencas de Plato y San Jorge)	Paleógeno-Neógeno	Los shales del Mioceno Temprano (Formación Porquero Bajo) han sido reconocidos como la roca fuente de hidrocarburos principal en el VIM. Formaciones Ciénaga de Oro y Porquero	Formaciones Ciénaga de Oro, Porquero y Tubará	Formaciones Ciénaga de Oro, Porquero Superior, Tubará y Corpa	10250 (3125)	4000 - 10250 (1220 - 3125)	1600	3800	6 (48 Can) - 120 (240 Can)	6 - 8	10 - 30	20 - 55	O.35	O2 - 04
Catatumbo	Cretáceo Superior post- Turoniano, Terciario (Campo Río Zulia) Paleógeno-Neógeno	Formaciones La Luna, Capacho, Cogollo, Catatumbo	Formaciones Catatumbo, Barco, Los Cuervos, Mirador, Carbonera, Grupo Uribante, Formaciones Capacho y La Luna. Rocas de basamento fracturado.	Formaciones Colón, Mito- San Juán, Los Cuervos, León	10250 (3125)	4000 - 10250 (1220 - 3125)	1600 2500	2800	60 (240 Can) - 120 (480 Can)	6	10 - 50	30 - 60	0.30	0.20 - 0.30

5	Pacífico Norte Costa Afuera	Pacífico Costa Afuera		No Reporta	No Reporta	No Reporta	15000 (4572)	8000 - 15000 (2438 - 4572)	2000 - 3000	3200	12 (48Can) - 120 (480 Can)	9	30 - 60	40 - 60	0.10	O1 - 02
		Chocó Costa Afuera		Formación Iró			19.000 (5791)	8000 - 19000 (2438 - 5791)	2000 - 3200	3300	12 (48Can) - 60 (240 Can)	6	20 - 40	20 - 50	0.1	0.1
	Pacífico	Pacífico Costa Afuera		No Reporta	No Reporta	No Reporta	15.000 (4572)	8000 - 15000 (2438 - 4572)	2200 	3200	12 (48Can) - 120 (480 Can)	9	30 - 60	40 - 60	0.10	O1 - 02
6	Sur Costa Afuera	Tumaco Costa Afuera	Paleógeno-Neógeno	No Reporta	No Reporta	No Reporta	15.000 (4572)	8000 - 15000 (2438 - 4572)	2200 	3200	12 (48Can) - 60 (240 Can)	7	10 - 20	20 - 40	0.30	0.2 - 0.3
7	Pacífico	Chocó	Paleógeno-Neógeno	La Formación Iró presenta buenas a excelentes características para la generación de petróleo (ANH, 2009)	Formaciones Iró y Mojarra	Formaciones La Sierra (Oligoceno) e Istmina (Mioceno Bajo)	15.583 (4750)	1604 - 15583 (489 - 4750)	2200 	3201	12 (48 can) - 60 (240 Can)	7 - 8	20 - 40	20 - 50	0.30	0.2 - 0.3
	Norte	Amagá	Neógeno	No Reporta	No Reporta	No Reporta	1000 (305)	1000 - 4000 (305 - 1220)	1600 	2500	12 (48 can) - 60 (240 Can)	8	20 - 40	20 - 50	0.30	0.2 - 0.3

8 Pacífico Sur	Tumaco	Paleógeno-Neógeno	Los parámetros de calidad de la roca fuente indican pobres características de generación (ANH-UNAL (2009))	No Reporta	No Reporta	15.000 (4572)	8000 - 15000 (2438 - 4572)	2400 3000	3200	12 (48 Can) - 40 (240 Can)	4 - 6	20 - 40	20 - 40	0.20	0.1 - 0.2
	Cauca- Patía	Paleógeno-Neógeno	Formaciones Chimborazo, Nogales y Chapungo	Formación Chimborazo	Formaciones Guachinte, Ferreira y Chimborazo	15.000 (4572)	8000 - 15000 (2438 - 4572)	2400 - 3000	3200	12 (48 Can) - 60 (120 Can)	6 - 8	20 - 40	20 - 50	0.25	0.10 - 0.20
9 Central	VMM	Cretáceo Superior, Paleógeno	Formaciones La Luna y Simití- Tablazo	Formación Lisama, Esmeraldas-La Paz, y Colorado- Mugrosa, La Luna, Umir y Barco.	Formaciones Esmeraldas, Colorado, Simití y Umir	8.000 (2438)	4000 - 8000 (1220 - 2438)	2700 - 3700	3000 - 4000	24 (96 Can)	8	20 - 50	20 - 60	0.25	0.1 - 0.2
	VSM	Cretáceo	Formaciones La Luna, Calizas de Tetuán, Villeta, Bambucá y Caballos	Formaciones Caballos, Monserrate, Gualanday y Honda	Formación de Guaduala	11.000 (3353)	4000 - 11000 (1220 - 3353)	1800 - 3200	2000 - 3500	60 (120 Can) - 60 (360 Can)	6 - 8	10 - 60	10 - 60	0.30	0.1 - 0.2
Llanos	Cordillera Oriental	Albiano Medio y Turoniano,	Formación La Luna	No Reporta	Formaciones Esmeralda, Mugrosa y Socha	12000 (3750)	4000 - 12000 (1220 - 3750)	1600 	3600	120 (48 can) - 200 (800 Can)	12	20 - 50	20 - 50	0.30	0.1 -0.2
Orinoquia	Llanos Orientales	Cretáceo Superior	Formaciones Formaciones Gachetá y Villeta	Formaciones Carbonera (C3, C5 y C7) y Mirador	Formación Carbonera (C2, C8)	4600 (1400)	4600 (1400)	2800 - 3200	2800	75 - 106 (640 Can)	7 - 8	20 - 60	20 - 60	0.3	0.1 - 0.2
11 Sur	Caguán- Putumayo	Cretáceo Superior	Formación Villeta (Govea y Aguilera, 1986)	Formaciones Caballos, Villeta y Pepino	Formaciones Villeta, Rumiyaco y Orteguaza	13.000 (3962)	7.500 - 13.000 (2286 - 3962)	2000 - 3500	3800	24 (96 Can) - 60 (120 Can)	6	20 - 50	20 - 60	0.15	0.1
	Vaupés- Amazonas		No Reporta	No Reporta	No Reporta	13000 (3962)	6500 - 13000 (1981 - 3962)	1800 	3900	24 (96 Can) - 60 (120 Can)	6	40 - 50	40 - 60	0.30	0.1 - 0.2

CAPÍTULO III

DISEÑO SÍSMICO PARA CADA ÁREA DE EXPLORACIÓN

3. DISEÑO SÍSMICO PARA CADA ÁREA DE EXPLORACIÓN

3.1 Área de Exploración 1: Caribe Norte Costa afuera y Caribe Sur Costa Afuera

El área de exploración está conformada por las siguientes cuencas:

- a. Los Cayos.
- b. Colombia.
- c. Guajira Offshore.
- d. Sinú Offshore,

En esta área de estudio se analizaron de manera conjunta las zonas del Caribe Norte costa afuera y las del Caribe Sur costa afuera. A partir de la información recopilada se obtuvieron las imágenes del Anexo 7:

- 1. Imagen de la presencia de hidratos de gas en el Caribe Colombiano.
- 2. Imagen de multicliente en el Caribe y en el Pacífico.
- 3. Imágenes de líneas sísmicas adquiridas por la Universidad de Texas.

3.1.1 Trazado de líneas sísmicas

Resultado de lo anterior se obtuvo el trazado de las líneas sísmicas propuestas para el área de exploración 1 (Tabla 7), Caribe Costa Afuera; la tabla incluye la cuenca a la que pertenece de acuerdo a la zonificación establecida (Figura 2, Tomo I), longitud y coordenadas en X y Y (Coordenadas planas origen Bogotá).

En la Figura 26 se localizan las líneas propuestas para el estudio sísmico en el área de exploración 1. Estas líneas se trazaron con el objetivo de unir uno de los multiclientes de los Cayos con el multicliente del Caribe Sur.

Nombre Línea		LONGITUD				
Sísmica	Prioridad	Km	VERTICE	INICIAL	VERTICE	FINAL
			X_Longitud	Y_Latitud	X_Longitud	Y_Latitud
CO-UNAL-ANH-						
20XX-01	Baja	249.21	645454	1677720	863725	1797980
CO-UNAL-ANH-						
20XX-02	Baja	302.12	1129780	2152720	1245880	1873800
CO-UNAL-ANH-						
20XX-03	Baja	424.67	836918	2097430	1080010	1749230
CO-UNAL-ANH-						
20XX-04	Baja	375.47	811633	1622350	586848	1923100
LC-UNAL-ANH-						
20XX-01	Media	229.04	350074	2153300	186983	1992500
LC-UNAL-ANH-						
20XX-02	Media	314.16	458912	2229960	242853	2001890
LC-UNAL-ANH-						
20XX-03	Media	278.50	272713	1936420	466678	2136270
LC-UNAL-ANH-						
20XX-04	Media	327.19	265991	1894250	555443	2046810
LC-UNAL-ANH-						
20XX-05	Media	287.07	180558	2081920	467315	2095400
LC-UNAL-ANH-						
20XX-06	Media	179.43	399885	2126040	507247	1982280
LC-UNAL-ANH-						
20XX-07	Media	290.30	241871	2147820	325196	1869740
	Longitud					
	Total	3257.16				

Tabla 7. Líneas sísmicas propuestas para la zona Caribe Costa Afuera.

3.1.2 Geología y parámetros geofísicos

Para establecer los parámetros geofísicos fueron analizadas las siguientes líneas sísmicas (Anexo 8).

1. Cuenca Colombia: L-1982-1400 1983 denver mig i-i 39759

2. Cuenca Guajira *Offshore* : Nz-1999-133_1999_geco_mig_i-i_37722-2

Los resultados de los análisis a partir de los atributos e interpretaciones se encuentran en la Tabla 8.

Figura 26. Mapa del norte de Colombia, indicando el trazado de las líneas sísmicas en la zona Caribe Norte.

CUENCAS CARIBE COSTA AFUERA	UNIDAD CRONOESTRATIGRÁFICA (CÓDIGO)	1	FORMACIÓN LITOESTRATIGRÁFIC	CA		PROFUNDIDAD (Pies-m)	VELOCIDAD	ES (m/s)	FRECUE	NCIA (Hz)	DIP (R	adianes)
		Roca fuente	ROCA ALMACÉN O RESERVORIO	Roca Sello	TARGET Pies (m)	UNIDADES DE INTERÉS Pies (m)	RMS	Intervalo	INS	DOM	DESV	VAR
Colombia	N1-Sm	No Reporta	No Reporta	No Reporta	15.000 (4572)	9500 – 15000 (2900 - 4572)	2000 - 3200	3400	20 - 50	10 - 30	0.30	0.1 - 0.2
Guajira <i>Offshore</i>	E-Sm N1-Sm	Formación Castilletes	No Reporta	No Reporta	15.000 (4572)	10250 - 15000 (3125 - 4572)	2500 - 3000	3200	10 - 40	20 - 45	0.20	0.1 - 0.3
Los Cayos	Oligoceno Tardío-Eoceno Temprano a Medio	No Reporta	Depósitos siliciclásticos del Eoceno y limolitas	Shales del Oligoceno Mioceno	11000 (3352)	4000 - 15000 (1220 - 4572)	2.000-4.300	2800- 4.600	20 - 40	20 - 50	0.2	0.1
			arrecifales del Mioceno-Oligoceno									
Colombia		No Reporta	No Reporta	No Reporta	15.000 (4572)	9500 - 15000 (2900 - 4572)	2000 - 3200	3400	20 - 50	10 - 30	0.30	0.1 - 0.2
Sinú <i>Offshore</i>		Shales de la Formación Cansona	Arenitas de la Formación Pavo	Arcillolitas de la Formación Floresanto	18.000 (5486)	9000 – 18000 (2750 - 5486)	2800 – 3400	3600	20 - 50	30 - 70	0.40	0.3

Tabla 8. Resumen de las características principales de la cuenca y parámetros geofísicos.

3.1.3 Diseño Sísmico

3.1.3.1 Parámetros de diseño

La	Tabla 9	presenta e	l resumen d	e parámetros	para el	diseño	sísmico de	l área (de exploración :	1.
-0	rabia b	pi cooliica c	i i counten a	e parametro	para er	a		aica	ae exploration .	

Parámetros de Diseñ	0
Intervalo de Grupo (m)	25
Intervalo de Disparo (m)	50
Número de Canales	400
<i>Offset</i> mínimo (m)	37.5
<i>Offset</i> máximo (m)	9976
Cubrimiento Nominal	100

Tabla 9. Parámetros geofísicos de diseño sísmico en la zona Caribe Costa afuera.

3.1.3.2 Estadísticas de diseño

Otros parámetros tenidos en cuenta se presentan en la Tabla 10.

Rango Resolución Vertical	5	13.33
Rango Zona Fresnel	214	495
Resolución Horizontal	10	26.667
Apertura de migración	316	2640

Tabla 10. Parámetros de interés para el diseño sísmico. La segunda columna corresponde al objetivo más somero y la tercera al objetivo más profundo y en algunos casos el de basamento.

3.1.3.3 Análisis del diseño.

Las Figuras 27 y 28 representan el cubrimiento a 4500 m y 1500 m de profundidad; cuando este valor es de 75 indica un buen rango de cubrimiento en la zona.

Figura 27. Diagrama de cubrimiento a 4500 m de profundidad, la flecha señala un cubrimiento de 75 para un número de ocurrencias de 15866.

Figura 28. Diagrama de cubrimiento a una profundidad de 1500 m, este valor es menor al del offset más profundo, debido a que el diseño fue orientado a esa profundidad, donde está la unidad de interés más profunda de la zona.

La Figura 29 indica el nivel de cubrimiento de cada *offset* en superficie; el eje x indica el *offset* que está siendo cubierto, y el eje y indica la comparación entre offsets. La gráfica muestra que offsets hasta 4500, que presentan una aceptable distribución estadística.

Figura 29. Histograma de offsets este diagrama muestra una distribución poco uniforme en los offsets en el caso de un arreglo marino (configuración del streamer).

Se realizó la anomalía residual de Bouquer para la Cuenca Los cayos (Figura 30), Colombia (Figura 31) y Guaiira Offshore (Figura 32), como base para el diseño de las líneas sísmicas para cada una de las cuencas mencionadas.

Figura 30. Mapa de anomalía residual de Bouguer para la Cuenca Los Cayos.

Figura 32. Mapa de anomalía residual de Bouguer en la Cuenca Guajira Offshore.

Figura 31. Mapa de anomalía residual de Bouguer para la Cuenca Colombia.

3.2 Área de Exploración 2: Caribe Norte

Esta zona de trabajo está conformada por las siguientes cuencas sedimentarias:

- a. Guajira.
- b. César Ranchería.

3.2.1 Trazado de líneas

Para la obtención de parámetros geofísicos se utilizó información a partir del informe "Programa adquisición procesamiento e interpretación de datos de aeromagnetogravimetría en las Cuencas Cesar-Ranchería, Alta y Baja Guajira, Contrato No 2070026", se copiaron las imágenes de las interpretaciones encontradas en los informes y se georreferenciaron con el software DirecAid (Figura 33). Las imágenes georreferenciadas son:

- 1. Interpretación Aeromagnetogravimétrica de CESAR-RANCHERIA Base del Cretáceo inversión 3D del residuo controlado (incluyendo los afloramientos - Referencia Nivel Medio del Mar (NMM))
- 2. Interpretación Aeromagnetogravimétrica de CESAR-RANCHERIA Base del Terciario, inversión 3D del residuo controlado, (ANH, 2007)

Figura 33. Mapa del norte de Colombia, indicando el trazado de las líneas sísmicas para la zona Caribe Norte.

La Tabla 11 presenta un resumen de las líneas sísmicas propuestas para la zona Caribe.

Nombre Línea		LONGITUD				
Sísmica	Prioridad	Km	VERTICE	INICIAL	VERTICE	FINAL
			X_Longitud	Y_Latitud	X_Longitud	Y_Latitud
GU-UNAL-ANH-						
20XX-03	Alta	129.89	1139110	1865340	1241390	1785280
GU-UNAL-ANH-						
20XX-02	Alta	200.99	1138560	1957210	1306360	1846570
CR-UNAL-ANH-						
20XX-01	Alta	271.68	1174590	1750090	1003520	1539030
VIM-UNAL-ANH-						
20XX-03	Alta	165.83	928516	1607440	1074890	1529520
GU-UNAL-ANH-						
20XX-05	Alta	91.41	1109190	1746050	1200440	1740690
GU-UNAL-ANH-						
20XX-04	Alta	168.17	1073700	1851930	1212340	1756750
GU-UNAL-ANH-						
20XX-01	Alta	203.61	1292080	1892970	1161760	1736520
CR-UNAL-ANH-						
20XX-02	Alta	35.05	1124990	1714720	1155320	1697140
CR-UNAL-ANH-						
20XX-04	Alta	63.01	1083420	1655210	1108930	1597600
CR-UNAL-ANH-						
20XX-03	Alta	47.05	1096650	1683550	1139490	1664080
	Longitud					
	Total	1376.69				

Tabla 11. Líneas sísmicas propuestas para el diseño sísmico para las cuencas de la zona Caribe.

3.2.2 Geología y parámetros geofísicos

Las líneas interpretadas en cada cuenca fueron las siguientes:

- 1. Guajira:
 - a. Sorpresa 2d-2002-gs-2002- 1112_2003_74978 -Westerngeco_mig_i-i
 - b. Aruchara-87_a-1987-1140_2001_Kelman_mig_o-o_82626
- 2. Cesar Ranchería:
 - a. Cocinetas 88 gc 1988 1150_1988_geosource_mig_i-i_20943
 - b. Perijá 89_cv-1989-2065_western_mig_i-i_23849

Algunas líneas interpretadas se pueden observar en el Anexo 9.

La Tabla 12 muestra las Características geológicas y parámetros geofísicos de la zona Caribe Costa Afuera

CUENCAS CARIBE NORTE	UNIDAD CRONOESTRATIGRÁFICA (CÓDIGO)	FORMACIÓN	I LITOESTRATIGRÁFICA		PROFUNDIDA	AD (Pies-m)	VELOO	CIDAD (m/s)	FREC (Hz)
		ROCA FUENTE	ROCA ALMACÉN O RESERVORIO	ROCA SELLO	PROFUNDIDAD APROX TARGET Pies (m)	INTERÉS Pies (Km)	RMS	INTERVALAR	INSTANTANEA
Guajira	Cretáceo Medio a Superior, Paleógeno- Neógeno	Formaciones Colón (Guaralamai), La Luna, Cogollo, Uitpa, Jimol y Castilletes	Formaciones La Luna, Cogollo, Macara, Siamana, Uitpa y Jimol	Grupos Yuruma y Cogollo, Formaciones Colón, Siamana, Uitpa, Castilletes y Guaralamai	15.000 (4572)	10.000 –15.000 (3000 - 4572)	2000 - 3200	3400	20 - 45
Cesar -Ranchería	Cretáceo-Paleógeno	Cesar: Formaciones Lagunitas, Aguas Blancas, Laja/La Luna y Molino; dentro de las cuales, Las Formaciones La Luna y Aguas Blancas presentan las mejores características de roca	César: Formaciones Río Negro, Lagunitas, Aguas Blancas, Laja/La Luna, Delicias, Barco y La Jagua	Formación Palmito Shale y arcillolitas	7500 (2286)	4000 – 7500 (1220 - 2286)	1200 - 2500	2200	20 - 60

Tabla 12. Características geológicas y parámetros geofísicos de la zona Caribe Costa Afuera.

3.2.3.3 Análisis del diseño

3.2.3 Diseño Sísmico

3.2.3.1 Parámetros de diseño

La Tabla 13, corresponde al resumen de los parámetros geofísicos propuestos para el diseño sísmico de esta área de exploración.

Parámetros de Diseño				
Intervalo de Grupo (m)	15			
Intervalo de Disparo (m)	15			
Número de Canales	400			
<i>Offset</i> mínimo (m)	22,5			
<i>Offset</i> máximo (m)	12486			
Cubrimiento Nominal	100			

Tabla 13. Parámetros de diseño sísmico.

3.2.3.2 Estadísticas de diseño

Otros parámetros tenidos en cuenta se presentan en la Tabla 14.

Rango Resolución Vertical	7,143	12,143
Rango Zona Fresnel	187	472
Resolución Horizontal	14,28	24,28
Apertura de migración	704	2640

Tabla 14. Parámetros de diseño sísmico. La segunda columna corresponde al objetivo más somero y la tercera al objetivo más profundo y en algunos casos el de basamento.

La Figura 34 indica el nivel de cubrimiento nominal a 4500 m de profundidad; este valor es de 225 indicando un buen rango de cubrimiento en la profundidad de la zona de interés.

La Figura 35 representa el diagrama de cubrimiento nominal a una profundidad de 1500 m: El valor de 75, es menor al de la profundidad de 4500 m de profundidad debido a que el diseño es orientado a esta profundidad.

- Figura 34. Diagrama de cubrimiento nominal a 4500 m de profundidad. La flecha señala un cubrimiento de 225 para un número de ocurrencias de 7910 de un total de 8134; el eje y es el número de ocurrencias, y el eje x es el cubrimiento nominal.
 - Fold Histogram

Figura 35. Cubrimiento nominal para una profundidad de 1500 m, el valor es de aproximadamente de 75 con 8050 ocurrencias.

La Figura 36 indica el nivel de cubrimiento de cada offset en la superficie. El eje x indica el offset que está siendo cubierto, y el eje y indica la comparación entre offsets. La gráfica muestra que los offsets hasta 4500 tienen un aceptable distribución estadística.

Figura 36. Histograma de *offsets*.

Para la Cuenca Cesar-Ranchería (Figura 37), Cuenca Guajira (Figura 38) se realizó el mapa de anomalía residual de Bouguer, base para el diseño de las líneas sísmicas. El eje x indica el offset que está siendo cubierto y el eje y indica la comparación entre cada offset con los otros.

Figura 38. Anomalía residual de Bouguer en la Cuenca Guajira.

Figura 37. Anomalía residual de Bouguer para la Cuenca Cesar-Ranchería.

3.3 Área de Exploración 3: Zona Caribe Sur

3.3.1 Trazado de líneas

Esta zona corresponde a las siguientes cuencas:

- a. Urabá.
- b. Sinú San Jacinto.
- c. Valle Inferior del Magdalena (Cuencas de Plato y San Jorge).
- d. Catatumbo.

Del informe "Programa adquisición procesamiento e interpretación de datos de aeromagnetogravimetría en el Litoral Caribe – Contrato No 073 Cuencas de Sinú - San Jacinto, Valle Inferior del Magdalena (Plato *y San Jorge)*', se copiaron las interpretaciones y se georreferenciaron con el software DirecAid:

- 1. Interpretación Estructural Tope del Basamento Pre Terciario incluyendo los afloramientos del Cretáceo (NMM --> ANH, 2007).
- 2. Interpretación Aeromagneto-gravimétrica de Cesar-Ranchería Interpretación Estructural Base del Terciario (ANH, 2007).
- 3. Modelaje gravimétrico Magnético INTERSECTA 1, (ANH, 2007).
- 4. Modelaje gravimétrico Magnético INTERSECTA 2, (ANH, 2007).
- 5. Modelaje gravimétrico Magnético INTERSECTA 3, (ANH, 2007).
- 6. Modelaje gravimétrico Magnético INTERSECTA 4, (ANH, 2007).
- 7. Modelaje gravimétrico Magnético INTERSECTA 5, (ANH, 2007).
- 8. Modelaje gravimétrico Magnético INTERSECTA 6, (ANH, 2007).
- 9. Modelaje gravimétrico Magnético INTERSECTA 7, (ANH, 2007).

Para el área de exploración 3 se proponen 21 líneas en total (Figura 39). En la Cuenca del Catatumbo, donde existe alta densidad de información, por tal razón es posible que estas 3 líneas no sean necesarias.

Figura 39. Mapa del norte de Colombia, indicando el trazado de las líneas sísmicas en la zona Caribe Sur.

La Figura 39 representa el trazado de las líneas sísmicas propuestas, mientras que en la Tabla 15 el resumen de las líneas sísmicas propuestas para la zona Caribe Sur.

3.3.2. Geología y parámetros geofísicos.

Las siguientes líneas interpretadas para estas cuencas se pueden observar en el Anexo 10:

- 1. Valle Inferior del Magdalena (Cuencas de Plato y San Jorge) a. Córdoba_Ayapel_I-90_CA_1990-1687_1990_Western_mig_i-i_19353
- 2. Catatumbo.
 - a. Tsf-1990-105_1990-105_1990_Western_mig_o-o_7612.

En la Tabla 16 se presenta el resumen del análisis de frecuencia e interpretación.

Nombre Línea		LONGITUD				
Sísmica	Prioridad	Km	VERTICE INICIAL		VERTICE INICIAL VERTIC	
			X_Longitud	Y_Latitud	X_Longitud	Y_Latitud
VIM-UNAL-ANH-20XX-02	Alta	187.15	909998	1538090	883623	1352810
VIM-UNAL-ANH-20XX-08	Alta	146.57	841036	1490830	960423	1405790
VIM-UNAL-ANH-20XX-07	Alta	117.48	854682	1517850	955867	1458150
VIM-UNAL-ANH-20XX-9	Alta	139.72	789222	1408180	916863	1351340
SSJ-UNAL-ANH-20XX-02	Alta	165.42	690706	1400800	800067	1524920
SSJ-UNAL-ANH-20XX-07	Alta	108.44	687976	1437840	731494	1338510
SSJ-UNAL-ANH-20XX-03	Alta	142.08	690192	1343310	793844	1440490
SSJ-UNAL-ANH-20XX-06	Alta	243.87	735356	1525590	939731	1392540
SSJ-UNAL-ANH-20XX-05	Alta	132.74	754804	1501880	748593	1369280
SSJ-UNAL-ANH-20XX-04	Alta	133.16	735169	1495270	737309	1362120
VIM-UNAL-ANH-20XX-05	Alta	155.57	894563	1640910	938332	1491620
VIM-UNAL-ANH-20XX-06	Alta	150.33	873262	1565570	1022850	1550630
SSJ-UNAL-ANH-20XX-01	Alta	137.87	808798	1643530	928709	1575480
VIM-UNAL-ANH-20XX-04	Alta	108.65	940038	1633260	975275	1530480
VIM-UNAL-ANH-20XX-01	Alta	117.11	989208	1698870	946290	1589900
CT-UNAL-ANH-20XX-01	Media	121.39	1118790	1485700	1174840	1378030
CT-UNAL-ANH-20XX-03	Media	58.06	1118640	1332580	1175140	1345970
CT-UNAL-ANH-20XX-02	Media	73.36	1111880	1388120	1185130	1384140
CT-UNAL-ANH-20XX-04	Media	92.46	1140710	1496090	1154810	1404700
CT-UNAL-ANH-20XX-05	Media	88.90	1159660	1421940	1163220	1333110
UR-UNAL-ANH-20XX-01	Alta	132.84	675229	1422590	729031	1301130
	Longitud Total	2753.17				

Tabla 15. Líneas sísmicas propuestas para la zona Caribe Sur.

CARIBE SUR	UNIDAD CRONOESTRATIGRÁFICA	FORMACIÓN LITOESTRATIGI	PROFUNDIDAD (Pies-m)		VELOCIDADES (m/s)		FRECUENCIA (Hz)		
		ROCA FUENTE	ROCA SELLO	Pies	UNID Pies (m)	RMS	INTE	INS	DOM
				(m)					
Urabá	Eoceno-Oligoceno	No Reporta	No Reporta	18.000	10000-18000	2000 - 2500	2700	10 - 30	20 - 55
				(5486)	(3048 - 5486)				
Sinú-San Jacinto	N1-Sm N3N7-St Cretáceo Superior, Paleógeno- Neógeno	La Fm. Ciénaga de Oro (Oligoceno-Mioceno Inferior) es la unidad más prospectiva de la Cuenca Sinú-San Jacinto; F. Porquero Inferior; Formación Toluviejo (Eoceno Medio); y Fm. Cansona del Cretáceo Superior (Campaniano- Maastrichtiano) y San Cayetano	Formaciones Maco-Chengue, San Jacinto, Maralú, El Carmen y Floresanto	7500 (2286)	4000 – 7500 (1220 - 2286)	1600 - 2500	2200	10 - 30	20 - 40
VIM (Cuencas de Plato y San Jorge)	Paleógeno-Neógeno	Los shales del Mioceno Temprano (F. Porquero Bajo) son la roca fuente de hidrocarburos principal en el VIM. Formaciones Ciénaga de Oro y Porquero	Formaciones Ciénaga de Oro, Porquero Superior, Tubará y Corpa	10250 (3125)	4000 - 10250 (1220 - 3125)	1600 - 3000	3800	10 - 30	20 - 55
Catatumbo	Cretáceo Superior post-Turoniano, Terciario (Campo Río Zulia) Paleógeno-Neógeno	Formaciones La Luna, Capacho, Cogollo, Catatumbo	Formaciones Colón, Mito-San Juan, Los Cuervos, León	10250 (3125)	4000 - 10250 (1220 - 3125)	1600 - 2500	2800	10 - 50	30 - 60

Tabla 16. Datos de geología y geofísica obtenidos para la zona Caribe Sur.

3.3.3. Diseño.

3.3.3.1. Parámetros de diseño

La Tabla 17 resume los parámetros de diseño sísmico para esta área de exploración.

Parámetros de Diseño			
Intervalo de Grupo (m)	30		
Intervalo de Disparo (m)	30		
Número de Canales	300		
<i>Offset</i> mínimo (m)	45		
<i>Offset</i> máximo (m)	4485		
Cubrimiento	100		

Tabla 17. Parámetros de diseño sísmico para la zona Caribe Sur.

3.3.3.2. Estadísticas de diseño

Otros parámetros tenidos en cuenta fueron la resolución y apertura de migración (Tabla 18).

Rango Resolución Vertical	7,5	15,83
Rango Zona Fresnel	271	502
Resolución Horizontal	15,0	31,67
Apertura de migración	653	2287

Tabla 18. Parámetros de interés para la zona Caribe Sur. La segunda columna corresponde al objetivo más somero y la tercera al objetivo más profundo y en algunos casos el de basamento.

3.3.3.3. Análisis del diseño.

El cubrimiento representativo es de 4500 m de profundidad, este valor es de 225 indicando un buen rango de cubrimiento en esta zona (Figura 40).

La Figura 41 corresponde al diagrama de cubrimiento a una profundidad de 1500 m, este valor es menor al del offset más profundo, debido a que el diseño fue orientado a esa profundidad, donde está la unidad de interés más profunda de la cuenca.

Figura 40. Diagrama de cubrimiento a 4500 m de profundidad, la flecha señala un cubrimiento de 180 para un número de ocurrencias de 7910 de un total de 4538.

Fold

Figura 41. Cubrimiento para una profundidad de 1500 m, el valor es de aproximadamente de 60 con 4658 ocurrencias.

El nivel de cubrimiento de cada *offset* en la superficie (Figura 42), donde el eje x indica *offset* que está siendo cubierto, y el eje y, indica la comparación entre *offsets*: La gráfica muestra que los *offsets* hasta 2500 tienen una buena distribución estadística.

Figura 44. Anomalía residual de Bouguer en la Cuenca Sinú – San Jacinto.

Figura 45. Anomalía residual de Bouguer en la Cuenca Sinú Offshore.

Figura 43. Mapa de anomalía de Bouguer, Cuenca del Catatumbo.

Figura 46. Anomalía residual de Bouquer en la Cuenca de Urabá.

3.4 Área de Exploración 4: Pacífico Norte Costa Afuera, Pacífico Sur Costa Afuera, Pacífico Norte y Pacífico Sur.

Esta área de exploración está conformada por las siguientes cuencas sedimentarias:

- a. Pacífico Costa afuera.
- b. Choco Costa afuera.
- c. Tumaco Costa afuera.
- d. Chocó.
- e. Amagá.
- f. Tumaco.
- g. Cauca Patía.

3.4.1 Trazado de líneas

A partir de los informes "Programa adquisición procesamiento e interpretación de datos de aeromagnetogravimetría en el Litoral Pacífico de Colombia - Contrato No 075" y "Programa adquisición procesamiento e interpretación de datos de aeromagnetometría en el Valle del Río Cauca - Contrato No: 074', se copiaron las siguientes imágenes y se georreferenciaron con el software DirecAid:

- 1. Interpretación estructural Tope basamento pre-terciario (ANH, 2006).
- 2. Modelaje gravimétrico y magnetométrico perfil 1 (ANH, 2006).
- 3. Modelaje gravimétrico y magnetométrico perfil 2 (ANH, 2006).
- 4. Modelaje gravimétrico y magnetométrico perfil 3 (ANH, 2006).
- 5. Modelaje gravimétrico y magnetométrico perfil 4, (ANH, 2006).
- 6. Modelaje gravimétrico y magnetométrico perfil 5, (ANH, 2006).
- 7. Modelaje gravimétrico y magnetométrico perfil 6, (ANH, 2006).
- 8. Interpretación estructural Tope K, referencia NMM, (ANH, 2006).
- 9. Modelaje gravimétrico y magnetométrico perfil 1, (ANH, 2006).
- 10. Modelaje gravimétrico y magnetométrico perfil 2, (ANH, 2006).

La Figura 48 muestra el trazado de las líneas sísmicas propuestas para la adquisición sísmica de esta zona. Además se generó el correspondiente listado de las líneas sísmicas con sus respetivas longitudes (Tabla 19). El resultado de este análisis dio un total 26 líneas, para lo cual fueron integradas las zonas: Pacífico Sur y Pacífico Norte.

Figura 47. Anomalía residual de Bouquer en la Cuenca del Valle Inferior del Magdalena.

Figura 48. Mapa del Pacífico colombiano, mostrando el trazado de las líneas sísmicas propuestas para la zona del Pacífico.

Pueden ser observadas las 26 líneas sísmicas propuestas (Figura 48). A nivel *Offshore* se realizó un análisis gravimétrico con los datos existentes, y el resultado se unirá con los resultados obtenidos en este análisis.

Nombre Línea		LONGITUD				
Sísmica	Prioridad	Km	VERTICE	INICIAL	VERTIC	E FINAL
			X_Longitud	Y_Latitud	X_Longitud	Y_Latitud
CAP-UNAL-ANH-						
20XX-01	Alta	416.51	813582	1057890	658854	671180
CAP-UNAL-ANH-						
20XX-02	Alta	137.16	805029	987833	767311	855963
CAP-UNAL-ANH-						
20XX-03	Alta	67.63	763605	1032760	826404	1007650
CAP-UNAL-ANH-						
20XX-04	Alta	62.22	755876	998953	811912	971910
CAP-UNAL-ANH-						
20XX-05	Alta	73.06	743138	971167	808780	939085
CAP-UNAL-ANH-						
20XX-06	Alta	65.52	719798	917419	781482	895339
CAP-UNAL-ANH-						
20XX-07	Alta	67.91	710820	878925	778429	872508
CAP-UNAL-ANH-						
20XX-08	Alta	62.08	718827	856056	774743	829089
CAP-UNAL-ANH-						
20XX-09	Alta	74.07	685473	811764	758886	821599
CAP-UNAL-ANH-						
20XX-10	Alta	62.01	686904	782870	743408	757332
CHO-UNAL-ANH-						
20XX-01	Media	188.30	703096	1272370	745295	1088860
CHO-UNAL-ANH-						
20XX-02	Media	127.89	/03292	1052420	6/484/	927734
CHO-OFF-ON-						
UNAL-ANH-20XX-		105 10	70007	075660	600504	1020200
	Media	135.19	/3298/	975662	608501	1028390
CHO-OFF-UNAL-		124.60	606021	1122100	625266	000544
ANH-20XX-01	Media	134.60	606821	1122100	635266	990544
PPR-UNAL-ANH-	Daia	464.00	110710	010670	200624	674600
	ваја	464.93	-110/13	9120/8	288634	6/4608
PPR-UNAL-ANH-	Daia	200.25	150522	100000	414526	052105
	ваја	309.35	158522	1026860	414526	823192
PPK-UNAL-ANH-	Daia	470.20	107155	002505	7210	666170
	ваја	4/0.39	19/155	0000000	/310	0/1000
PPR-UNAL-ANH-	Baja	151.91	379361	1088030	499627	995222

20XX-03						
PPR-UNAL-ANH-						
20XX-02	Baja	468.33	553781	1207560	276678	841946
TU-OFF-TU-UNAL-						
ANH-20XX-01	Media	175.04	654936	1116290	655705	941251
TU-OFF-TU-UNAL-						
ANH-20XX-02	Media	257.96	663400	848078	533716	625088
TU-OFF-TU-UNAL-						
ANH-20XX-03	Media	271.54	647374	861094	486819	642103
TU-OFF-TU-UNAL-						
ANH-20XX-04	Media	125.51	553651	861721	664774	803363
TU-OFF-TU-UNAL-						
ANH-20XX-05	Media	137.76	449606	721827	571165	657015
AM-UNAL-ANH-						
20XX-01	Baja	139.21	809771	1196350	857115	1065430
AM-UNAL-ANH-						
20XX-02	Baja	109.31	853159	1186860	814651	1084550
AM-UNAL-ANH-						
20XX-03	Baja	72.44	786561	1127130	858170	1138080
	Longitud					
	Total	4827.83				

Tabla 19. Resumen de líneas sísmicas propuesta para la zona Pacífico.

3.4.2 Geología y parámetros geofísicos

Las líneas sísmicas que se interpretaron fueron las siguientes; En el Anexo 11 se observa la interpretación de algunas líneas sísmicas para el área de exploración 4.

1. Cuenca Chocó

a. Ispbd-2005-204022_2007 Westerngeco miipstm_99751

2. Cuenca Chocó Costa Afuera

- a. Ispbd-2005-432105_2007_westerngeco_m_i-ipstm_99741
- b. Ispbd-2005-306999_2007_westerngeco_m_o-opstm_99664
- c. Ispbd-2005-420999_2007_westerngeco_m_i-ipstm_99729

3. Cuenca Pacífico Costa Afuera

- a. Ispbd-2005-420999_2007_westerngeco_m_o-opstm_99682
- 4. Cuenca Tumaco Costa Afuera
 - a. Pacífico-82_p-1982-1350n_2002_petrobras_mig_i-i_67952
- 5. Cuenca Chocó
 - a. CH-2005-04_POST_STACK_MIGRATION
 - b. Tumaco-91_tb-1991-1130_2000_gaps_mig_i-i_37150
- 6. Cuenca Cauca Patía
 - a. Pacífico 1973 I-1973-d5-2001_Petrobras_mig_i-i_67798
- La Tabla 20 representa el resumen de la geología y geofísica de la zona.

UNIDAD	FORMACIÓ	ÓN LITOESTRATIGRÁFICA		PROFUNDID	AD (Pies-m)	VELOCI	OCIDAD (m/s) FRECUENCIA (Hz) BUZAMIENTO (Radianes)				
CRONOESTRATIGRÁFICA	ROCA FUENTE	ROCA ALMACEN o RESERVORIO	ROCA SELLO	TARGET	UNIDADES	RMS	INTERVALO	INSTANTANEA	DOMINANTE	DESVIACIÓN	VARIANZA
				(m)	(m)						
	No Reporta	No Reporta	No Reporta	15000 (4572)	8000 - 15000 (2438 - 4572)	2000 - 3000	3200	30 - 60	40 – 80	0.10	O1 - 02
	Formación Iró			19.000 (5791)	8000 - 19000 (2438 - 5791)	2000 - 3200	3300	20 - 40	20 – 50	0.1	0.1
	No Reporta	No Reporta	No Reporta	15.000 (4572)	8000 - 15000 (2438 - 4572)	2200 - 3000	3200	30 - 60	40 – 80	0.10	O1 - 02
Paleógeno-Neógeno	No Reporta	No Reporta	No Reporta	15.000 (4572)	8000 - 15000 (2438 - 4572)	2200 - 3000	3200	10 - 20	20 – 40	0.30	0.2 - 0.3
Paleógeno-Neógeno	La Formación Iró presenta buenas a excelentes características para la generación de petróleo (ANH, 2009)	Formaciones Iró y Mojarra	Formaciones La Sierra (Oligoceno) e Itsmina (Mioceno Bajo)	15.000 (4572)	8000 - 15000 (2438 - 4572)	2200 - 3000	3201	20 - 40	20 – 50	0.30	0.2 - 0.3
Neógeno	No Reporta	No Reporta	No Reporta	1000 (305)	1000 - 4000 (305 - 1220)	1200 - 2300	2500	20 - 40	20 – 50	0.30	0.2 - 0.3
Paleógeno-Neógeno	Los parámetros de calidad de la roca fuente indican pobres características de generación (ANH-UNAL (2009))	No Reporta	No Reporta	15.000 (4572)	8000 - 15000 (2438 - 4572)	2400 - 3000	3200	20 - 40	20 – 40	0.20	0.1 - 0.2
Paleógeno-Neógeno	Formaciones Chimborazo, Nogales y Chapungo	Formación Chimborazo	Formaciones Guachinte, Ferreira y Chimborazo	15.000 (4572)	8000 - 15000 (2438 - 4572)	2400 - 3000	3200	20 - 40	20 – 50	0.25	0.10 - 0.20

Tabla 20. Resumen de datos geológicos y geofísicos para la zona Pacífico.

3.4.3 Diseño

3.4.3.1 Parámetros de diseño

Los parámetros del diseño para la zona se calcularon para Pacífico Offshore (marino) y pacífico terrestre (Tabla 21, Tabla 22 y Tabla 23).

Parámetros de Diseño	Pacífico Marino	Pacífico Terrestre
Intervalo de Grupo (m)	15	25
Intervalo de Disparo (m)	15	25
Número de Canales	800	400
<i>Offset</i> mínimo (m)	22.5	37.5
<i>Offset</i> máximo (m)	11986	4988
Cubrimiento	100	100

Tabla 21. Parámetros de adquisición sísmica para la zona Pacífico.

3.4.3.2 Análisis del diseño

Otros parámetros tenidos en cuenta, se presentan en la Tabla 22:

Pacífico Terrestre							
Rango Resolución Vertical	7,50	15,33					
Rango Zona Fresnel	271	502					
Resolución Horizontal	15,000	31,667					
Apertura de migración	1408	2287					

Tabla 22. Parámetros para la zona Pacífico Norte. La segunda columna corresponde al objetivo más somero y la tercera al objetivo más profundo y en algunos casos el de basamento.

Pacífico Marino									
Rango Resolución									
Vertical	7,50	15,83							
Rango Zona Fresnel	271	604							
Resolución Horizontal	16,667	26,667							
Apertura de migración	1408	3315							

 Tabla 23. Parámetros para la zona Pacífico Norte Marino. La segunda columna corresponde al objetivo más somero y la tercera al objetivo más profundo y en algunos casos el de basamento.

Las Figura 49 y 50 corresponden al cubrimiento a una profundidad de 4500 m. Este valor es de 148 indicando un buen rango de cubrimiento para esta zona, para la parte marina y terrestre, respectivamente.

Las Figuras 51 y 52 representan los diagramas de cubrimiento a una profundidad de 1500 m, para los sectores marino y terrestre respectivamente. Este valor es menor al del offset más profundo porque el diseño fue orientado a esa profundidad, donde está la unidad de interés más profunda de la zona.

Figura 49. Diagrama de cubrimiento a 4500 m de profundidad. La flecha señala un cubrimiento de 143 para un número de ocurrencias de 24620 MARINA de un total de 8134.

Figura 51. Zona Pacífico Marino 1500 m, cubrimiento para una profundidad de 1500 m, el valor es de aproximadamente de 75 con 8050 ocurrencias.

Figura 52. Zona Pacífico Terrestre. Cubrimiento para una profundidad de 1500 m, el valor es de aproximadamente de 75 con 8050 ocurrencias.

La Figura 53 indican el nivel de cubrimiento para cada offset en la superficie, El eje x indica el offset que está siendo cubierto, la gráfica muestra que los offsets hasta 2500 tienen una buena distribución estadística.

Offset Histogram

Figura 53. Zona Pacífico Terrestre. Histograma de offsets.

Para el diseño de líneas sísmicas en las Cuencas: Amagá (Figura 54), Cauca-Patía (Figura 55), Chocó (Figura 56), Chocó Offshore (Figura 57), Pacífico Profundo (Figura 58), Tumaco (Figura 59), Tumaco *Offshore* (Figura 60), se realizó el mapa de anomalía residual de Bouquer.

Figura 55. Mapa de anomalía de Bouguer, Cuenca Cauca-Patía.

Figura 56. Mapa de anomalía de Bouguer, Cuenca Chocó.

Figura 57. Mapa de anomalía de Bouguer, Cuenca Chocó *Off-Shore*.

Figura 58. Mapa de anomalía de Bouguer, Cuenca Pacífico Profundo.

Figura 59. Mapa de anomalía de Bouguer, Cuenca Tumaco.

Figura 60. Mapa de anomalía de Bouguer, Cuenca Tumaco *Offshore*.

3.5 Área de Exploración 5: Central, Llanos Orientales – Orinoguía y Cordillera Oriental

Esta cuenca está compuesta por las Cuencas Sedimentarias:

- a. Valle Medio del Magdalena (VMM).
- b. Valle Superior del Magdalena (VSM).
- c. Cordillera Oriental.
- d. Llanos Orientales.

3.5.1 Trazado de líneas

A partir de los informes "Levantamiento aerogravimétrico y aeromagnético de los Sectores norte y oriental de la Cuenca de Los Llanos orientales, Colombia - Contrato No 034", "La Cordillera Oriental de Soápaga y el piedemonte de la Cordillera Oriental – Llanos Orientales, Colombia - Contrato No 35" y "Cuenca de los Llanos Orientales - Contrato No 036", se copiaron las siguientes imágenes y se georreferenciaron con el software DirecAid:

- 1. Interpretación estructural Tope del Basamento Pre-Terciario incluyendo afloramientos del Cretáceo, referencia NMM (ANH, 2007).
- 2. Modelaje gravimétrico Magnético INTERSECTA 1, (ANH, 2009).
- 3. Modelaje gravimétrico Magnético INTERSECTA 1, (ANH, 2009).
- 4. Modelaje gravimétrico Magnético INTERSECTA 1, (ANH, 2009).
- 5. Modelaje gravimétrico Magnético INTERSECTA 1, (ANH, 2009).
- 6. Modelaje gravimétrico Magnético INTERSECTA 1, (ANH, 2009).
- 7. Modelaje gravimétrico Magnético INTERSECTA 1, (ANH, 2009).
- 8. Modelaje gravimétrico Magnético INTERSECTA 1, (ANH, 2009).
- 9. Interpretación Estructural del Basamento Pre-Cretáceo, referencia: NMM, (ANH, 2009).
- 10. Modelaje gravimétrico Magnético PERFIL 1, (ANH, 2009).
- 11. Modelaje gravimétrico Magnético PERFIL 2, (ANH, 2009).
- 12. Modelaje gravimétrico Magnético PERFIL 3, (ANH, 2009).
- 13. Modelaje gravimétrico Magnético PERFIL 4, (ANH, 2009).
- 14. Modelaje gravimétrico Magnético PERFIL 5, (ANH, 2009).
- 15. Modelaje gravimétrico Magnético PERFIL 6, (ANH, 2009).
- 16. Topografía Llanos Orientales.
- 17. Topografía Cordillera.
- 18. Mapa de densidades Llanos Orientales.
- 19. Mapa de densidades Cordillera Oriental.
- 20. Interpretación estructural Tope del Paleozoico Referencia NMM, (ANH, 2009).

21. Modelaje gravimétrico - Magnético PERFIL 1, (ANH, 2009). 22. Modelaje gravimétrico - Magnético PERFIL 2, (ANH, 2009). 23. Modelaje gravimétrico - Magnético PERFIL 3, (ANH, 2009). 24. Modelaje gravimétrico - Magnético PERFIL 4, (ANH, 2009).

Para el diseño de las líneas del área de exploración 5, se aprovechó la información del modelamiento gravimétrico, interpretación y aeromagnético realizado para la Cuenca de los llanos orientales, (ANH, 2009).

La Tabla 24 representa el listado de líneas sísmicas utilizadas para el análisis del diseño sísmico y en la Figura 61, puede ser observado el trazado de las líneas sísmicas propuestas y en el Anexo 12 se presenta la interpretación de algunas líneas sísmicas.

Nombre Línea		LONGITUD				
Sísmica	Prioridad	Km	VERTICE	INICIAL	VERTICE	FINAL
			X_Longitud	Y_Latitud	X_Longitud	Y_Latitud
LL-UNAL-ANH-20XX-						
08	Media	276.50	1223620	777056	1400990	989177
LL-UNAL-ANH-20XX-						
17	Media	165.64	1163340	855791	1293590	753453
LL-UNAL-ANH-20XX-						
16	Media	189.80	1188500	880604	1341250	767943
LL-UNAL-ANH-20XX-						
15	Media	233.37	1162540	931521	1365670	816633
LL-UNAL-ANH-20XX-						
14	Media	164.47	1407480	840344	1263530	919883
LL-UNAL-ANH-20XX-						
09	Media	189.84	1445600	894719	1300370	772459
LL-UNAL-ANH-20XX-		177.10	1200210	015017	1100010	775740
06	Media	1/7.19	1289310	915217	1180010	//5/48
LL-UNAL-ANH-20XX-		200 50	1410000	1100100	1440000	010450
	меаа	289.59	1418600	1108190	1440820	819452
LL-UNAL-ANH-20XX-	Madia	102.25	1620040	1175010	1622750	1100760
	Meula	105.25	1020040	11/5610	1032730	1109700
	Media	166.25	1615280	1050280	1713080	016510
	Media	100.25	1015200	1030200	1/15900	910510
Ω4	Media	222 19	1506870	1133690	1591790	928367
11-UNAL-ANH-20XX-		222.15	13000/0	1155656	1351750	520307
010	Media	293.96	1399570	1051180	1665680	1176060
LL-UNAL-ANH-20XX-		255155	100000	1001100	1000000	11,0000
11	Media	342.26	1380490	993551	1684560	1150640
LL-UNAL-ANH-20XX-						
12	Media	227.61	1388920	932599	1580830	1054990
LL-UNAL-ANH-20XX-						
13	Media	148.72	1695310	980604	1558050	923349
LL-UNAL-ANH-20XX-						
07	Media	128.79	1609290	1054540	1525330	956885
LL-UNAL-ANH-20XX-						
01	Alta	75.52	1648960	1175290	1661800	1100880
COR-VMM-UNAL-	Alta	166.40	1009770	1191970	942110	1039940

ANH-20XX-02						
COR-VMM-UNAL-						
ANH-20XX-05	Alta	154.13	933089	1150090	1065190	1070860
COR-VMM-UNAL-						
ANH-20XX-04	Alta	164.78	943292	1167100	1084150	1081590
COR-VMM-UNAL-						
ANH-20XX-07	Alta	110.08	899937	1052520	992582	993077
COR-VMM-UNAL-						
ANH-20XX-01	Alta	182.61	942030	1152930	952340	970628
COR-VMM-UNAL-						
ANH-20XX-06	Alta	130.93	928124	1122690	1027680	1037660
COR-VMM-UNAL-						
ANH-20XX-03	Alta	125.48	1010920	1039250	1095580	1131860
COR-VMM-UNAL-						
ANH-20XX-08	Alta	72.46	946210	907905	950958	835603
	Longitud					
	Total	4581.82				

Tabla 24. Líneas sísmicas propuestas para la zona Central, Llanos Orientales-Orinoquia y Cordillera Oriental.

En total se proponen 23 líneas sísmicas 2D. Se hizo necesario unir las zonas de los Llanos - Orinoquia y Central, debido a que en los límites de dichas zonas existe evidencia de la existencia de una posible cuenca sedimentaria.

3.5.2 Geología y parámetros geofísicos

Las líneas interpretadas fueron las siguientes:

- 1. Valle Medio del Magdalena (VMM)
 - a. DM89186090M_II
- 2. Valle Superior del Magdalena (VSM)
- 3. Cordillera Oriental
 - a. anh-sp-2005-06-mig-in
- 4. Llanos Orientales Orinoquia
 - a. ALG-1992-01_2007-WESTERNGECO_M_I-IPSTM_92682
 - b. OMI-1998-40_1999-GAPS_MIG_I-I_35414-35
 - c. 43BRVN-2005_PETROSEIS_MIG_O-O_84827-2
 - d. AC-1992-4900_1993-WESTERN_mig_i-i_25660

En la Tabla 25 están resumidos los datos de geología y geofísica de las zonas: Central, Llanos Orientales – Orinoquia y Cordillera Oriental.

		FOI	FORMACIÓN LITOESTRATIGRÁFICA			RMACIÓN LITOESTRATIGRÁFICA		PROFUND	DIDAD (Pies-m)	VELOC	CIDADES (m/s)	FRECUEN	CIA (Hz)	DIP (Rac	lianes)
ZONAS UNIDAD CRONOESTRATIGRÁFICA	UNIDAD CRONOESTRATIGRÁFICA	ROCA FUENTE	ROCA ALM O RES	ROCA SELLO	TARGET Pies	PROMEDIO UNIDADES Pies	RMS	INTERVÁLICA	INSTANTANEA	DOMINANTE	DESVIACIÓN	VARIANZA			
					(m.)	(m.)									
VMM	Cretáceo Superior, Paleógeno	Formaciones La Luna y Simití- Tablazo	Formación Lisama, Esmeraldas-La Formaciones	Formaciones	8.000	4000 – 8000	2700 -	3000 - 4000	20 - 50	20 - 60	0.25	0.1 - 0.2			
		Tablazo	Umir y Barco.	Simiti y Umir	(2438)	(1220 - 2438)	5700								
VSM	Cretáceo	Formaciones La Luna, Calizas de Tetuán, Villeta, Bambucá v	Formaciones Caballos, Monserrate,	Formación de Guaduala	11.000	4000 - 11000	1800 -	2000 - 3500	10 - 60	10 - 60	0.30	0.1 - 0.2			
		Caballos			(3353)	(1220 - 3353)	5200								
Cordillera Oriental	Albiano Medio y Turoniano,	Formación La Luna	No Reporta	Formaciones Esmeralda, Mugrosa y Socha	12000	4000 - 12000	1600 - 3400	3600	20 - 50	20 - 50	0.30	0.1 -0.2			
Llanos Orientales	Cretáceo Superior	Formaciones Gachetá y Villeta	Formaciones Carbonera (C3, C5 y C7) y Mirador	Formación Carbonera (C2, C8)	3000 (915)	2000 - 4600 (610 - 1400)	2800 - 3200	2800	20 - 60	20 - 60	0.3	0.1 - 0.2			

Tabla 25. Datos geológicos y geofísicos de las zonas: Central, Llanos Orientales – Orinoquia y Cordillera Oriental.

3.5.3 Diseño

Los parámetros geofísicos resultantes para el diseño y trazado de líneas sísmicas de las zonas Central, Llanos Orientales – Orinoquia y Cordillera Orienta, incluyen el intervalo de grupo, disparo, canales, offset y cubrimiento (Tabla 26).

3.5.3.1 Parámetros de diseño

Parámetros de Diseí	ĭo
Intervalo de Grupo (m)	20
Intervalo de Disparo (m)	20
Número de Canales	400
<i>Offset</i> mínimo (m)	30
<i>Offset</i> máximo (m)	3990
Cubrimiento	120

Tabla 26. Parámetros de diseño sísmico para las zonas Central, Llanos Orientales – Orinoguia y Cordillera Oriental.

3.5.3.2 Estadísticas de diseño

Para la estadística del diseño del área se incluyen otros parámetros como la zona de Fresnel, resolución y apertura de migración. Parámetros que deben ser considerados (Tabla 27).

Rango Resolución

Vertical

Rango Zona Fresnel

Resolución Horizontal

Apertura de migración

Tabla 27. Parámetros para la zona Central, Llanos Orientales – Orinoquia y Cordillera Oriental. La segunda columna corresponde al objetivo más somero y la tercera al objetivo más profundo y en algunos casos el de basamento.

3.5.3.3 Análisis del diseño

La Figura 62 representa el cubrimiento a 4500 m de profundidad; este valor es de 150 indicando un buen rango de cubrimiento en esta zona.

5,0	15,41
136	482
10,00	30,83
245	2165

Figura 62. Diagrama de cubrimiento nominal a 4500 m de profundidad. La flecha señala un cubrimiento de 150 para un número de ocurrencias de 6455.

La Figura 63 constituye el diagrama de cubrimiento a una profundidad de 1500 m; este valor es menor al del offset más profundo, debido a que el diseño fue orientado a esa profundidad, donde está la unidad de interés más profunda de la zona.

Para las Cuencas: Los Llanos (Figura 65), Cordillera Oriental (Figura 66), Valle medio del Magdalena (Figura 67), Valle Superior del Magdalena (Figura 68) se realizaron los mapas de anomalía residual de Bouquer.

Figura 63. Cubrimiento para una profundidad de 1500 m. El valor es de aproximadamente de 60 en 6455 ocurrencias.

La Figura 64 indica el nivel de cubrimiento por cada offset en la superficie. El eje x indica el offset que está siendo cubierto, y el eje y indica la comparación entre offsets. Se observa que los offsets hasta 3750 tienen una buena distribución estadística.

Figura 64. Histograma de *offsets*.

Figura 65. Mapa de anomalía residual de Bouguer para la Cuenca Los Llanos.

Figura 66. Anomalía residual de Bouguer para la Cuenca de la Cordillera Oriental.

Figura 67. Anomalía residual de Bouguer para la Cuenca del Valle Medio del Magdalena.

Figura 68. Anomalía residual de Bouguer para la Cuenca del Valle Superior del Magdalena.

3.6 Área de Exploración 6. Zona 11 Sur.

Esta zona comprende las siguientes cuencas sedimentarias:

a. Caguán – Putumayo b. Vaupés – Amazonas

A partir de los informes "Levantamiento aerogravimétrico y aeromagnético de la Cuenca Putumayo, Colombia - Contrato No 036" y "Programa aerogravimétrico y aeromagnético de la Cuenca del Yarí -Caquán, Colombia - Contrato No 2052332", se cargaron y visualizaron las siguientes imágenes y se georreferenciaron con el software DirecAid:

- 1. Izquierda interpretación Tope del Basamento Pre-Cretáceo inversión 3D del residual controlado (ANH et al., 2007).
- 2. Modelaje gravimétrico y magnetométrico perfil 2, (ANH et al., 2007).
- 3. Modelaje gravimétrico y magnetométrico perfil 3, (ANH et al., 2007).
- 4. Tope del Paleozoico, inversión 3D del residuo controlado. Referencia nivel medio del mar (NMM), (ANH et al., 2007).
- 5. Modelaje gravimétrico y magnetométrico perfil 1, (ANH et al., 2007).
- 6. Modelaje gravimétrico y magnetométrico perfil 2, (ANH et al., 2007).
- 7. Modelaje gravimétrico y magnetométrico perfil 3, (ANH et al., 2007).
- 8. Modelaje gravimétrico y magnetométrico perfil 4, (ANH et al., 2007).
- 9. Modelaje gravimétrico y magnetométrico perfil 5, (ANH et al., 2007).
- 10. Modelaje gravimétrico y magnetométrico perfil 6, (ANH et al., 2007).

El área en donde se propone hacer el trazado de las líneas sísmicas 2D para la zona sur, se muestra en la Figura 69. Se proponen 11 líneas sísmicas 2D (4 líneas de rumbo y 7 líneas de buzamiento) y su descripción se encuentra en la Tabla 28.

En el Anexo 13 se observa la interpretación de algunas líneas sísmicas para el área de exploración 6.

Figura 69. Mapa del sur de Colombia mostrando el trazado de líneas sísmicas propuestas para la Zona Sur.

Nombre Línea		LONGITUD				
Sísmica	Prioridad	Km	VERTICE	INICIAL	VERTICE	FINAL
			X Longitud	Y Latitud	X Longitud	Y Latitud
ANP-UNAL-ANH-						
20XX-01	Baja	180.54	1368500	723318	1456480	565661
COR-CP-UNAL-						
ANH-20XX-01	Alta	101.77	995433	740268	1027900	643812
CP-UNAL-ANH-						
20XX-01	Alta	239.02	955799	761875	971462	523366
CP-UNAL-ANH-						
20XX-02	Alta	292.80	856508	718624	954677	442771
CP-UNAL-ANH-						
20XX-03	Alta	154.76	782218	688563	793570	668797
CP-VA-UNAL-ANH-						
20XX-01	Alta	328.76	790660	533871	1005690	731906
CP-VA-UNAL-ANH-						
20XX-02	Alta	287.34	882991	533653	1075240	747203
CP-VA-UNAL-ANH-						
20XX-03	Baja	170.00	985145	493170	1093330	556517
CP-VA-UNAL-ANH-						
20XX-04	Ваја	2/4.90	104/460	411/90	1285/40	548890
CP-UNAL-ANH-	A 11 -	01 50	075260	700000	020252	000050
20XX-05	Alta	91.50	975360	/98983	939252	883058
CP-VSM-UNAL-		145 70	075177	F2C127	745671	C14004
	Alta	145.70	825133	526137	/456/1	614994
	Data	145.00	1107000	694220	1002250	E41426
	Ddjd	145.00	1107800	084329	1083250	541420
	Baia	150 55	1061120	568240	1124520	422010
	Daja	130.33	1001130	500249	1124520	422919
2022-01	Alta	60 57	1069650	860086	1087100	800420
11-\/Δ-ΙΙΝΔΙ-ΔΝΗ-	Aita	00.57	1005050	000000	100/150	000125
20XX-02	Alta	187.90	1068030	748414	1089990	677069
LL-CP-UNAL-ANH-	7 1100	10/190	1000030	7 10 11 1	1005550	0,7005
20XX-01	Alta	389.37	1021480	797246	1081730	844821
VA-UNAL-ANH-						
20XX-01	Alta	104.80	1040380	805919	1144820	814580
VA-UNAL-ANH-						
20XX-02	Baja	110.32	1067800	718830	1159530	780123
VA-UNAL-ANH-						
20XX-03	Baja	197.32	1188960	692588	1187690	604728
VA-UNAL-ANH-						
20XX-04	Baja	620.96	1133300	252015	1499970	753152

VA-UNAL-ANH- 20XX-05	Baia	68 65	1403510	398161	1367740	339570
	Daja	00.05	1105510	550101	1307710	333370
VA-UNAL-ANH-						
20XX-06	Baja	227.49	1344210	420009	1387920	336299
VA-UNAL-ANH-						
20XX-07	Baja	270.31	1129430	389577	1362900	253348
VA-UNAL-ANH-						
20XX-08	Baja	61.52	1370210	307530	1344280	251745
VSM-UNAL-ANH-						
20XX-01	Alta	190.18	676090	608990	830861	719508
	Longitud					
	Total	5060.09				

Tabla 28. Líneas sísmicas propuestas para la Zona Sur.

3.6.1 Geología y parámetros geofísicos

Para establecer los criterios para el diseño y los parámetros sísmicos se hizo necesario la evaluación y análisis de algunas líneas sísmicas representativas de la zona de estudio. Las líneas sísmicas interpretadas están referenciadas a continuación:

1. Caguán Putumayo – Vaupés Amazonas

a. Proyecto: Helen 2D-2007 Línea Sísmica 2D HEL-2007-06 2007-PETROSEIS mig i-i 95620-20

b. Proyecto: San Miguel-93 Línea Sísmica PD-1993-1275_1993-GAPS_mig_i-i_25391-2

c. Línea Sísmica VI-1992-1200_1992-FRONTERAS_mig_i-i_30806

Previo al diseño se hizo el análisis de las respectivas líneas sísmicas: atributos, identificación de las zonas de interés. El resumen de los parámetros geológicos y geofísicos para esta zona fueron sintetizados (Tabla 29).

		FORMACIÓN LITOESTRATIGRÁFICA		PROFUNDIDAD (Pies-m) VELOCII		DADES (m/s) FRECUEN		CIA (Hz) BUZAMIENTO (F		O (Radianes)		
CUENCA	CRONOESTRATIGRÁFICA (CÓDIGO)	ROCA FUENTE	ROCA ALMACÉN O RESERVORIO	ROCA SELLO	TARGET	UNIDAD DE INTERÉS	RMS	INTERVALO	INSTANTANEA	DOMINANTE	DESVIACIÓN	VARIANZA
					Pies	Pies						
					(m.)	(m.)						
Caguán-Putumayo	Cretáceo Superior	Formación Villeta (Govea y Aguilera, 1986)	Formaciones Caballos, Villeta y Pepino	Formaciones Villeta, Rumiyaco y Orteguaza	13.000 (3962)	7.500 - 13.000 (2286 - 3962)	2000 - 3500	3800	20 - 50	20 - 60	0.15	0.1
Vaupés-Amazonas		No Reporta	No Reporta	No Reporta	13000	6500 - 13000	1800 - 3800	3900	40 - 50	40 - 60	0.30	0.1 - 0.2
					(3962)	(1981 - 3962)						

Tabla 29. Datos de la geología y geofísica de la Zona Sur.

3.6.2 Diseño

3.6.2.1 Parámetros de diseño

La Tabla 30, resume los parámetros de diseño sísmico propuesto para la Zona Sur.

Parámetros de Diseño				
Intervalo de Grupo (m)	20			
Intervalo de Disparo (m)	60			
Número de Canales	480			
<i>Offset</i> mínimo (m)	45			
<i>Offset</i> máximo (m)	4485			
Cubrimiento	100			

Tabla 30. Parámetros de diseño para la Zona Sur.

3.6.2.2 Estadísticas de diseño

Con la información establecida a partir de antiguos proyectos en el área de estudio, se logró establecer el rango de la zona de Fresnel, la apertura de migración y la resolución, parámetros que se deben tener en cuenta y se resumen en la Tabla 31.

Apertura de migración

Tabla 31. Parámetros adicionales para la Zona Sur. La segunda columna corresponde al objetivo más somero y la tercera al objetivo más profundo y en algunos casos el de basamento.

3.6.2.3 Análisis del diseño

En la Figura 70 se presenta el histograma con el cubrimiento a una profundidad de 4500 m. Este valor es de 198, a partir de 7618 indicando un buen rango de cubrimiento en esta zona.

Figura 70. Diagrama de cubrimiento a 4500 m de profundidad, la flecha señala un cubrimiento de 225 para un número de ocurrencias de 7910 de un total de 8134.

En la Figura 71 se presenta el diagrama de cubrimiento a una profundidad de 1500 m. Este valor es menor al del offset más profundo, porque el diseño fue orientado a esa profundidad, y es donde se encuentra la unidad de interés más profunda de la cuenca.

7,50	15,83
262	502
19,050	33,017
1320	2287

Figura 71. Cubrimiento para una profundidad de 1500 m, el valor es de aproximadamente 75 con 7742 ocurrencias.

Para las Cuencas Vaupés-Amazonas y Caguán-Putumayo, la anomalía residual de Bouguer se muestra en las Figuras 73 y 74, respectivamente.

La Figura 72 indica el histograma con el nivel de cubrimiento para cada offset en la superficie. El eje x indica el offset que está siendo cubierto, y el eje y indica la comparación entre offsets. En la grafica se muestra que los offsets hasta 2500 tienen una buena distribución estadística.

Figura 72. Histograma de *offsets*.

Figura 73. Anomalía residual de Bouguer para la Cuenca de Vaupés-Amazonas.

Figura 74. Mapa de anomalía residual de Bouguer de la Cuenca de Caguán – Putumayo.

UNIVERSIDAD NACIONAL DE COLOMBIA S E D E B O G O T Á

4. RESULTADOS

Los resultados derivados del diagnóstico de la información disponible, de la metodología de Evaluación multicriterio EMC y del diseñó de programas de adquisición sísmica 2D (Onda P) en Colombia, se pueden observar en los mapas de diseño sísmico sub-regional a escala 1:250.000 en el Anexo 14 y regional a escala 1:1.000.000 en el Anexo 15.

El diseño sísmico sub-regional (Anexo 14) se encuentra dividido en 8 planchas distribuidas de la siguiente manera:

- Plancha 1, zona Caribe Norte.
- Plancha 2, zona Caribe Norte.
- Plancha 3, zona Caribe Sur.
- Plancha 4, zona Central y Llanos Orientales y Orinoquia •
- Plancha 5, zona Pacífico Norte, Pacífico Sur y Central. ٠
- Plancha 6, zona Llanos Orientales y Orinoquia. •
- Plancha 7, zona Central y Sur.
- Plancha 8, zona Llanos Orientales y Sur.

El diseño sísmico regional (Anexo 15) se encuentra dividido en 3 planchas Distribuidas de la siguiente manera:

- Plancha 1, Caribe.
- Plancha 2, Pacífico.
- Plancha 3, Sur.

5. CONCLUSIONES Y RECOMENDACIONES

A partir de la clasificación de cuencas se establecieron 11 zonas para el diseño y trazado de las líneas sísmicas 2D; con la validación por medio de la matriz de comparación por pares, el análisis cuantitativo y cualitativo, se diseñaron 112 líneas sísmicas regionales y sub-regionales con una longitud total de 23.364,53 km.

A partir de los datos de gravimetría del territorio colombiano, suministrados por la Agencia Nacional de Hidrocarburos y complementados con bases compiladas por la Universidad Nacional de Colombia, ha sido posible generar mapas temáticos de gravimetría que permiten diseñar la trayectoria de perfiles de líneas sísmicas para modelar las cuencas de interés. Sin embargo, se hace necesario hacer un estudio con mayor detalle para el caso de escalas locales de tal manera que, se realice un tratamiento especial para la recolección de los datos de gravimetría en el trazado de líneas sísmicas.

La información que se presenta en este trabajo, se considera como una primera aproximación para el diseño de líneas sísmicas 2D en Colombia, proyectadas para el período de 2010-2025.

Se recomienda hacer un estudio más riguroso del diseño propuesto, con el fin de optimizar los parámetros y el trazado respectivo. Así mismo, realizar pruebas de campo que permitan evaluar los parámetros del diseño sísmico.

Se requiere seguir avanzando en el conocimiento de la geología, geofísica, geología del petróleo de las cuencas sedimentarias en Colombia con una base de datos lo suficientemente robusta para servir de base para los parámetros del diseño sísmico.

Los diseños suministrados deben ser integrados a los análisis obtenidos a partir de otras bases de datos geo-científicos incluyendo datos de magnetometría, geología, líneas sísmicas y datos de perforaciones.

En varias de las cuencas analizadas se observa una carencia de datos de gravimetría terrestres o aerotransportada por lo que se sugiere realizar programas específicos de gravimetría y magnetometría junto con los programas sísmicos.

Los parámetros geofísicos fueron obtenidos a partir de secciones sísmicas 2D en formato digital. Algunos parámetros como velocidades, horizontes de interés y datos del subsuelo se obtuvieron de secciones sísmicas, informes previos o de algunos registros de pozo. También se recurrió a información de procesamiento en las cajas de velocidades y la etiqueta de líneas sísmicas que se encuentran en formato físico – papel - (velocidades intervalares, RMS, tiempos, CDP's, cubrimiento, intervalo de grupo, intervalo de disparo).

El presente diseño de líneas sísmicos 2D atraviesan áreas restringidas que deben ser consideradas, además se deben tener en cuenta algunos cascos urbanos, comunidades y zonas de reserva o protección ambiental, entre otras consideraciones.

BIBLIOGRAFÍA

ANH – CARSON AEROGRAVITY – GRATEROL, V y VARGAS, A., 2007. Programa adquisición, procesamiento e interpretación de datos de aeromagnetogravimetría en Las Cuencas de Cesar-Ranchería, Alta y Baja Guajira. Contrato No. 2070026, Bogotá.

ANH – CARSON AEROGRAVITY – GRATEROL, V y VARGAS, A., 2007. Programa adquisición procesamiento e interpretación de datos de aeromagnetogravimetría en el litoral Caribe - Cuencas Sinú, San Jacinto, Plato y San Jorge. Contrato No. 073, Bogotá.

ANH – CARSON AEROGRAVITY – GRATEROL, V., 2006. Programa adquisición procesamiento e interpretación de datos de aeromagnetogravimetría en el litoral Pacífico de Colombia. Contrato No 075, Bogotá.

ANH - CARSON AEROGRAVITY - GRATEROL, V., 2006. Programa adquisición procesamiento e interpretación de datos de aeromagnetometría en el Valle del Río Cauca. Contrato No: 074, Bogotá.

ANH – CARSON AEROGRAVITY – GRATEROL, V., 2009. Levantamiento aerogravimétrico y aeromagnético de los Sectores norte y oriental de la Cuenca de Los Llanos Orientales, Colombia. Contrato No 034, Bogotá.

ANH – CARSON AEROGRAVITY – GRATEROL, V., 2009. La Cordillera Oriental de Soápaga y el piedemonte de la Cordillera Oriental – Llanos Orientales, Colombia. Contrato No 035, Bogotá.

ANH - CARSON AEROGRAVITY - GRATEROL, V., 2009. Cuenca de los Llanos Orientales, Octubre -Noviembre 2007. Contrato No 036, Bogotá.

ANH – CARSON AEROGRAVITY – GRATEROL, V y VARGAS, A., 2007. Levantamiento aerogravimétrico y aeromagnético de la Cuenca Putumavo, Colombia Contrato No 036, Bogotá,

ANH – CARSON AEROGRAVITY – GRATEROL, V., 2006. Programa aerogravimétrico y aeromagnético de la Cuenca del Yarí – Caguán, Colombia. Contrato No 2052332, Bogotá.

AGENCIA NACIONAL DE HIDROCARBUROS., 2007. Colombian Sedimentary Basins: Nomenclature, Boundaries and Petroleum Geology, a New Proposal, 92 p. Bogotá.

AGENCIA NACIONAL DE HIDROCARBUROS., 2006. Atlas Geoquímico de Colombia. Capítulo 3 - Cuenca Cayos. 3 p.

AGENCIA NACIONAL DE HIDROCARBUROS., 2006. Línea Sísmica Trasandina ANH – TR – 2006 – 4^a.

AMOCO OVERSEAS EXPLORATION COMPANY, SPECTRUM ENERGY and INFORMATION TECHNOLOGIES, 1982. Report on the Processing of Seismic Data from *Offshore* Colombia: Fragata and Los Galeones. 42 p.

ANH – UNAL., 2009. Organic Geochemistry Atlas of Colombia. Earth Sciences Research Journal. Vol. 13, Special Edition, 134 p, Bogotá.

ANH – UNAL., 2009. Inventario, interpretación y evaluación de la información geológica, geofísica y geoquímica perteneciente al Área Libre de las Cuencas Los Cayos y Urabá

CORSEN, A., 2000. Planning land 3D seismic surveys. Society of Exploration Geophysicists, United States of America.

DOBRIN, M. AND SAVIT, C. H., 1988. Introduction to Geophysical Prospecting. McGraw-Hill. Fourth Edition, United States of America.

ESQUIVEL, H.; FLÓREZ, J.; MARTÍNEZ, W.; OBANDO, G. Y SÁNCHEZ, L., 1998. Mapa Gravimétrico de Colombia, Convenio: IGAC - INGEOMINAS. Bogotá, D. C.

GOVEA, C. Y AGUILERA H., 1986. Cuencas Sedimentarias de Colombia. Cuadernos Técnicos de ECOPETROL. 79 p.

KEAREY, P. and BROOKS, M., 1984. An Introduction to Geophysical Exploration, Second Edition. Editorial Oxford, London.

REEVES, C., 1991. Potential field data processing and interpretation. Department of Earth Resources surveys, ITC, The Netherlands.

STONE, D., 1994. Designing Seismic Surveys in Two and Three Dimensions. Society of Exploration Geophysicists, United States of America.

TELFORD, W. M.; GELDART, L. P., 1990. Sheriff. R.E. Applied Geophysics, Second Edition, Cambridge University Press, USA.

http://www.anh.gov.co.

BIBLIOGRAFIA IMÁGENES

"Petróleo. Luis (2008)¿Cuánto Ariza queda realmente?" Visto en http://www.google.com.co/imgres?imgurl=http://davidprofesociales.files.wordpress.com/2008/06/hombres cubiertos petroleo.jpg Último Acceso Mayo de 2010.

http://agustinmartini.iespana.es/petroleo.gif (n.d./año) Los Dinosaurios {Imagen} Último Acceso Mavo de 2010.

http://www.google.com.co/imgres?imgurl=http://www.amazoniaporlavida.org/es/img/noticias/dominio-08-16.jpg (2009 6:49) "El Petróleo Mejor Bajo Tierra" Último Acceso Mayo de 2010.

http://www.epis.com.co/WhereoilMap/

Mosconi Enrique (2008) "Petróleo Argentino, Gestación y Logros en la Defensa del Patrimonio Nacional" Visto en: http://pensarennacion.blogspot.com/2008/12/gpd-viii-2-el-petroleo-en-argentina.html Último acceso Mayo de 2010.

Peláez Javi (2008) "La Aventura de la Historia - ¿Conocían el Petróleo en la Antigüedad? La experiencia pirómana de Alejandro Magno" Visto en La aldea Irreducible. Encontrado en http://aldeairreductible.blogspot.com/2008/07/la-aventura-de-la-historia-conocian-el.html Ultimo acceso Mavo del 2010.

Sáenz Eduardo (2005) "La Industria del Petróleo en Colombia. Concesiones, reversión y asociaciones" Visto en la Biblioteca Virtual del Banco de la República: www.lablaa.org/.../credencial/enero94/enero2.htm Último acceso Mayo de 2010.

http://www.taringa.net/posts/noticias/1519968/La-vuelta-de-un-verdadero-grande-YPF.html Último acceso Agosto del 2010.

ANEXO 6. FORMULACIÓN MATEMÁTICA PARA EL CÁLCULO DE LOS PARÁMETROS GEOFÍSICOS.

Intervalo de grupo (ΔX)

En el cálculo del intervalo de grupo se busca evitar el "alising" espacial durante la migración de los eventos buzantes y de más altas frecuencias (1):

$$\Delta X \le \frac{V_{\min}}{2*f_{\max}*\sin(\theta_{\max})} \tag{1}$$

V_{min} es la velocidad rms, f_{max} es la frecuencia máxima y θ_{max} el buzamiento máximo, (todos a nivel de objetivo). Objetivo se refiere a un plano de falla o difracciones de interés para la migración. A partir de esta ecuación se generó una tabla (anexo 1), en la que se calculan los intervalos de grupo que cumplen con la condición de la ecuación 1, se observó que para buzamientos de 60° y una frecuencia máxima de 70 Hz, un intervalo de grupo de 15m es satisfactorio. Para el caso de una adquisición marina este intervalo es adecuado y no representa altos costos en la adquisición.

Offset máximo

Este valor depende de la profundidad del objetivo, para un modelo de capas paralelas el offset máximo debe ser mayor o igual a la profundidad del objetivo más profundo (2). Se busca que este valor contribuya con la formación de la imagen a nivel del reflector más profundo, además a nivel de procesamiento, se debe tener en cuenta la precisión que se desea en el cálculo de las velocidades de apilado (3) y la atenuación de múltiples (4). Estos valores son tenidos en cuenta en las siguientes ecuaciones:

$$Offset_{max} \ge profundidad \quad objetivo$$
 (2)

$$Offset_{max} \ge \left(\frac{T_o V^2}{2F_{min}(\Delta V/V)}\right)^{1/2}$$
(3)

$$Offset_{max} \ge V_p V_m \left(\frac{2T_o}{F_{min}(v_p^2 v_m^2)}\right)^{1/2}$$
(4)

Debido al poco conocimiento de los datos geológicos de la zona, los valores geofísicos del área a iluminar se calcularon las ecuaciones para un tiempo de arribo variando desde 1 s hasta 9 s, ancho de banda desde 1 Hz hasta 70 Hz, porcentaje de velocidades del 5%, Vp y Vm variando desde 1500 m/s hasta 6000 m/s y 800 hasta 6500 respectivamente, tiempo del reflector T_o desde 5s hasta 9s y el valor de 8985 m satisface estas condiciones.

Offset mínimo (offset_{min} \leq 3750 m)

La máxima distancia entre la fuente y el receptor debe ser menor que la profundidad del objetivo más somero, como lo indica la ecuación 5

$$Offset_{\min} \le 0.5tV$$

t es el tiempo de viaje de la capa más somera y V_s es la velocidad de la capa somera. Esta condición permite iluminar esta capa.

Número de canales (NC)

Se calcula a partir del offset máximo y del intervalo de grupo, ecuación 6:

$$NC - 1 = \frac{offset_{max}}{\Delta x}$$

Intervalo de disparo (ΔS)

El intervalo de disparo depende del número de canales NC, el cubrimiento del subsuelo deseado "Fold" y del intervalo de grupo, ecuación 7, este valor influye directamente en el costo de la adquisición especialmente en sísmica terrestre debido al alto costo en las perforaciones y el tipo de carga que se utiliza, en este caso, sísmica marina no es tan costoso pero si representa un buen porcentaje en el valor de la adquisición.

$$\Delta S = \frac{\Delta XNC}{2Fold} \tag{7}$$

Frecuencia máxima (75 Hz)

Las frecuencias que son posible tener a una profundidad dada, está dada por la ecuación 8.

(5)

(6)

(8)

Donde 150 corresponde al número de canales y *t* al tiempo.

Zona de Fresnel

Es la zona de la superficie iluminada que contribuye con la reflexión, dada por la expresión:

Resolución

Vertical: Es función de la longitud de onda del registro sísmico. La máxima resolución está entre 1/4 y 1/8 de la longitud de onda dominante del pulso, en profundidad la resolución es menor debido a la atenuación de las altas frecuencias.

Horizontal: La superficie de reflexión de la energía que se transmite en forma de rayos (consideración geométrica), está compuesta de infinitos puntos donde esta energía es dispersada. La zona de Fresnel es el área de la superficie desde la que se produce la reflexión de la energía que llega a la superficie, el diámetro de esta zona (R_F), es el límite de la resolución horizontal, y depende de la longitud de la onda dominante y de la profundidad del reflector (9).

(9)

ANEXO 7. ZONAS CARIBE NORTE COSTA AFUERA Y CARIBE SUR COSTA AFUERA.

Imagen de la parte noroccidental de Colombia (Superior izquierda), mostrando algunos multiclientes existentes en las zonas Caribe y Pacifico, imagen de estudio donde existe evidencia de hidratos de gas (Costado superior derecho); líneas sísmicas adquiridas de la Universidad de Texas (Imagen inferior).

ANEXO 8. INTERPRETACIÓN ZONA CARIBE NORTE COSTA AFUERA

Interpretación Cuenca Guajira Offshore (Nazareth-99): Línea sísmica Nz-1999-133_1999_geco_mig_i-i_37722-2. En la parte inferior se muestran las imágenes de los análisis de frecuencia y buzamiento.

Los Cayos: Interpretación a partir de la información sísmica evidenciando la presencia de posibles altos del basamento.

ANEXO 9 INTERPRETACIÓN LÍNEAS EN LA ZONA CARIBE NORTE

Cuenca Guajira: Línea sísmica Sorpresa 2d-2002-gs-2002-1112_2003_74978-westerngeco_mig_i-i. En la parte inferior, se muestran las imágenes de los atributos con análisis de frecuencia y buzamiento. A partir de la interpretación de esta línea sísmica perteneciente al proyecto sorpresa, se obtuvieron los parámetros geofísicos.

Sorpresa Línea 2d-2002-gs-2002-1112_2003_74978-westerngeco_mig_i-i: sin interpretar e interpretada.

Cuenca Guajira: Línea sísmica Aruchara-87_a-1987-1140_2001_Kelman_mig_o-o_82626

Cuenca Cesar-Ranchería: Línea sísmica Cosinetas 88 gc – 1988 – 1150_1988_geosource_mig_i-i_20943 (Superior). Se muestran las imágenes de los análisis de frecuencia y buzamiento (Inferior).

Cuenca Cesar-Ranchería: Línea sísmica Cosinetas 88 gc – 1988 – 1150_1988_geosource_mig_i-i_20943. Se muestran las imágenes de los análisis de frecuencia y buzamiento (Inferior).

Interpretación Zona Caribe Norte, Cuenca Guajira, línea sísmica aruchara-87_a-1987-1140_2001_kelman_mig_o-o_82626.

ANEXO 10 INTERPRETACIÓN LÍNEAS EN LA ZONA CARIBE SUR

Cuenca Valle Inferior del Magdalena (Cuencas del Plato y San Jorge):

Línea sísmica Córdoba_Ayapel_I-90_CA_1990-1687_1990_Western_mig_i-i_19353.

Las imágenes inferiores corresponden a los análisis de frecuencias y buzamiento.

Imágenes de los análisis de frecuencia y buzamiento, a partir de análisis de atributos.

ANEXO 11. INTERPRETACIÓN LÍNEAS DE LAS ZONAS PACÍFICO NORTE COSTA AFUERA, PACÍFICO SUR COSTA AFUERA, PACÍFICO NORTE Y PACÍFICO SUR.

Cuenca Chocó Costa Afuera: Líneas sísmicas Ispbd-2005-204022_2007_westerngeco_m_i-ipstm_99751 (izquierda) y Ispbd-2005-432105_2007_westerngeco_m_i-ipstm_99741. Evidencia de hidratos de gas.

Ispbd-2005-432105_2007_westerngeco_m_i-ipstm_99741

Cuenca Tumaco Costa afuera:

Imágenes de los análisis de frecuencia y buzamiento.

Imágenes de los análisis de frecuencia

ANEXO 12 INTERPRETACIÓN LÍNEAS EN LA ZONA CENTRAL, LLANOS ORIENTALES- ORINOQUIA Y CORDILLERA ORIENTAL

Interpretación Cuenca VMM (La Cira – Infantas): En la parte inferior, se muestran las imágenes de los análisis de frecuencia y buzamiento.

Análisis de atributos sísmicos: Frecuencia Instantánea

Buzamiento

Cuenca Cordillera Oriental (Soápaga 2D-2005):

Interpretación Cuenca Llanos Orientales (Guaviare Oriental-92):

Atributo sísmico para análisis de frecuencias

Atributo para buzamiento

ANEXO 13 INTERPRETACIÓN LÍNEAS EN LA ZONA SUR

Proyecto Helen 2D-2007

HEL-2007-06_2007-PETROSEIS_mig_i-i_95620-20

Análisis de Frecuencias

Proyecto San Miguel-93

PD-1993-1275_1993-GAPS_mig_i-i_25391-2

Análisis de buzamiento

Análisis de atributos sísmicos frecuencia instantánea

Atributo Sísmico buzamiento.